
Coordinate Spaces
& Transformations

in InDesign CS4 – CC  |  Chapters 1-2

S C R I P T I N G S E C R E T S

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

1. Key Concepts 02

Dealing with coordinate spaces and transformation matrices is one of the most

obscure and underappreciated exercises in InDesign scripting and programming.

The fault mainly lies with Adobe documentation, especially the Scripting DOM

reference, which does not clearly explain the topic and some of its essential keys.

This document attempts to shed some light on the beast.

2D Coordinate Systems

Within InDesign, the geometric location of a
point is defined in terms of coordinates within a

two-dimensional space. A coordinate is a pair of
numbers (usually denoted x and y ) that locate a point

relative to a given origin, according to the orientation
of two given axes and with respect to the length of
some units along each axis. These three parameters
form a 2d coordinate system.

InDesign handles multiple coordinate systems. A
given location in the layout can be expressed by differ-
ent coordinate pairs depending on the system. Users
can easily experience how coordinates and measure-
ments vary when playing with on-screen rulers, chang-
ing measurement units, moving the origin or the
Reference Point (cf. Figure 1). The actual position and
size of layout elements do not change, but both the
Control panel, the Info panel and the Transform panel
accordingly update the coordinates of the objects and
other related values such as width and height of page
items. Special display settings (e.g. Show Content Offset
and Dimensions Include Stroke Weight) also affect how
measurements display in the application interface.

Affine Maps

Every coordinate system is somewhat arbitrary.
Whatever the origin, the units and the orientations of

the axes, we can point out to the same geometric point,
or path, by simply adjusting the coordinates to the
desired coordinate system (cf. Figure 2). In other words,
we can convert any coordinate pair from one system
into another.

Fortunately such conversion is easy to describe in
mathematical terms (no matter what coordinate
systems or points we are considering). The functional
relationship between two coordinate systems is known
as an affine map. An important property of any affine
map is that it can always be entirely defined by an array
of six real numbers. (We’ll talk more about these a bit
later.)

Relative Locations & Inner Space

When rendering graphics, paths and frames,
InDesign needs to address their final locations accord-
ing to various parameters. Some are extrinsic (e.g. screen
resolution, parent window size, zoom factor, scrolling
state), other are intrinsic in that they specify the inner
geometry of the layout items and their relationships
within the publication.Figure 1. � The ruler coordinate system makes it easy to check

locations and measurements from the application interface.

HORIZONTAL RULER

REFERENCE
POINT

LOCATOR

COORDINATE PAIR

ORIGIN

VE
RT

IC
AL

 R
UL

ER

10

10
X=15

Y=16.75

X-AXIS

Y-
AX

IS

y'

x'
O'

y

xO

P

Figure 2.
The same location P can
be expressed by different
coordinate pairs — (x, y)
vs. (x' , y') — depending
on the coordinate system
we consider.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

03

As the whole document relies on a hierarchical struc-
ture that involves a lot of dependencies, geometric con-
straints and nested elements, any change made at any
level is likely to affect the location of every child object.
Consider what is happening when the user moves a
group formed by 50 rectangles (cf. Figure 3). Does this
mean that every individual rectangle is in some way
rewritten so that its inner path fits the new location?
Of course not!

To accurately manage such operations, InDesign
stores locations and geometric data through a hierar-
chical model that exactly reflects how layout objects
are nested or linked. In this model, each component
(including groups, pages, spreads, and even on-screen
views) has a virtual coordinate system (usually referred
to as its inner coordinate space) which is associated
to an array of six numbers that specify how to convert
any coordinate pair from that inner system into the parent’s
coordinate system (see Affine Maps above).

That’s it! Now when the user is moving a group of
page items, InDesign only has to change the map attri-
butes that connect the group to its parent spread (in
terms of coordinate systems). So there is no need to
update children’ locations.

Transformations
Only Re-Map Coordinates

From the user’s perspective, all goes as if page items
themselves were transformed. We can make them
smaller or wider, we can rotate them, shear them, etc.
Anyway, the most important rule to learn regarding
transformations is that a transformation never alters the
actual geometry of graphics objects.

In other words, whatever the transformations we
apply, every path point that underlies the target object
will keep its intrinsic location in the inner coordinate
space of that object.

In InDesign a transformation only affects the relation-
ship between two coordinate systems. “Transforming
an object” should be understood as changing in some
way the affine map that translates the inner coordinate
space of this object into its parent’s coordinate space.

This definition may seem quite abstract, so let me
take an example. Say you want to integrate a heart
shape vector in your layout. At some point a page item
is created storing only the geometry of this object
within its inner space (cf. Figure 4). Note that the object

Figure 4.  Inner space of a basic page
item. The heart shape vector
represents the object’s geometry,
made up by a set of path points. Here
the location of each point is expressed
relative to the inner coordinate system.

Figure 3.
When a group of 50 rectangles is moving,
InDesign doesn’t need to update the location
and the inner path points of every child item.
Instead the group tells its parent—typically, a
spread container—that its location has
changed. Technically, this is done by simply
adjusting the affine map attributes that
connect the group’s inner space to its parent
space. This way the child objects are not
modified at all (as their respective position
relative to the group remains unchanged).

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

04

is not visible yet, as we didn’t specify how and where it
is supposed to take place in the publication. To render
the page item, InDesign needs to target a device
space, that is, an imageable area where layout contents
ultimately appear, such as an on-screen window or a
printed page.

Let’s not go into details and just assume that a device
space is in turn a coordinate system which has
the ability to draw graphics. Now, suppose
that the heart shape is a direct child of
the device along the object hier-
archy. The child then can
convert any coordinate pair
from its inner coordinate
system to the device coordi-
nate system—since this is the purpose
of the affine map associated to the child.

Figure 5 shows how the device and the page item
interact via the affine map (M ). As you can see, the
device can draw the entire shape in its own coordinate
space without altering the inner geometry of the page
item: any required coordinate pair is just re-mapped
through M.

 Now remember that M is somehow encoded as a
sequence of six numeric attributes. It is easy to under-
stand that changing these attributes will cause
the device to redraw the heart shape as if 
taking place in a different coordinate
system. Figure 6 shows the result
of such “transformation”—
making the shape look
smaller in the device space.
This is just an example of
scaling the page item.

Maps, Transformations and Matrices

Before we go any further, there is an important point
to highlight: the only internal difference between
Figure 5 and Figure 6 above, is the change from M to M’.
Not only the inner geometry of the heart shape but
also the respective coordinate systems are preserved1.
This means that all about transformations regards
affine maps, and only affine maps … until the output
device space is reached.

As said earlier, an affine map M  is based on a sequence
of six numbers. Although it is not vital to understand
how these attributes operate behind the scenes, an
essential key is that, in InDesign, any transformation
T  is encoded through a sequence of six numbers too.
To put it differently: transformations and affine maps
are substantially encoded the same way and can play
the same role. In mathematical terms, applying T to M
amounts to calculate a kind of product :

M’   =  M  ×  T

where M’ refers to the resulting map (once the trans-
formation is done). Of course the above terms are not
real numbers. Each in fact is a 3-by-3 matrix that
encapsulates the corresponding sequence of attributes.

1.	 Some authors take a different approach and consider that affine
transformations actually affect coordinate systems; other argue that
graphics objects themselves undergo transformations (rather than
coordinate systems). Either point of view may be self-consistent,
depending on how the underlying concepts are defined and devel-
oped. Anyway, my personal approach is that a transformation does
only change affine maps, and that a affine map connects two coordi-
nate systems.

Figure 5.  When the device
(in gray) needs to draw its
contents, it communicates
with the inner coordinate
space of each child item (in
red). Thanks to the affine
map (M) associated to the
child item space, every inner
coordinate pair (x,y ) is
properly translated into
another one, (X,Y), relative
to the parent space.

(x,y)

(x,y)

CHILD COORDINATE SYSTEM

DEVICE
COORDINATE SYSTEM

(x,y)

(x',y')

CHILD COORDINATE SYSTEM

DEVICE
COORDINATE SYSTEM

Figure 6.  Altering the
affine map attributes (M')
changes the resulting
coordinates in the device
space, e.g. making the
shape look smaller. This is
how all transformations
work in InDesign—and in
many PostScript-based
applications.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

05

The reason why transformations can be encoded as
affine maps, and vice-versa, is that InDesign only sup-
ports affine transformations of the plane, a group of geo-
metric transformations that both preserve collinearity,
ratios of distance and parallel lines2. These are: trans-
lation, scaling, rotation, reflection, shear, and
any combination thereof. Figure 7 shows basic examples.

In the InDesign SDK, scripting dom and idml ter-
minologies, affine maps are often referred to as page
item transform(ation) states:

— ITransform is the “transformation matrix that maps
from the inner coordinate space to the parent coordinate
space.” (sdk)

2.	 An affine transformation always takes a parallelogram to a paral-
lelogram; and, given two parallelograms P and P’, there is always an
affine transformation that takes P to P’. This strictly equates to the
concept of affine mapping. By contrast, perspective projections are
not affine transformations.

— PageItem.transformValuesOf: “After an object is
transformed, you can get the transformation matrix that
was applied to it, using the transformValuesOf() method.”
(Scripting DOM)

— ItemTransform: “The relationship of the inner coor-
dinates of the child element to the coordinate system of the
<Spread> element (or other parent element) is defined by
the ItemTransform attribute of the child element.” (idml
specification)

These definitions all refer to the current affine map
from a coordinate space to its parent’s space, which at
a given time is stored as a property of the component.
Transformations themselves are temporary operands,
used in methods that cause an affine map to change. In
all cases, however, attributes or arguments are imple-
mented, stored and/or processed as matrix stuctures or
similar. For this reason, the term transformation
matrix in Adobe documentation may refer to either
an affine map (the state) or a transformation (the action).

Matrix Patterns

By convention every transformation matrix is written:

a b 0
c d 0
e f 1

where a, b, c, d, e, f are the numeric attributes of the
affine transformation, or map. To apply the matrix to a
given (x, y) coordinate pair, we calculate the following
product:

[x  y  1]  ×
a b 0
c d 0
e f 1

which leads to
[xa+yc+e  xb+yd+f  1].

Figure 7.  Examples of basic
transformations applied to
an heart shape (top) and to a
rectangle (bottom). The
initial geometry is shown in
light red; the resulting
shapes are shown dotted. (If
you mentally replace
rectangles with coordinate
system bases, you get the
same picture in terms of
affine mapping.)

TRANSLATION SCALING SKEW ROTATION

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

06

Ignoring the third dimension, the resulting coordi-
nate pair is finally defined by:

(x', y')  = (xa + yc + e, xb + yd + f).

But the above presentation is somewhat artificial. We
can see that the 3d matrix only allows to compound a
2d linear transformation, based on the attributes a, b, c,
d , with a 2d translation, based on the [ e  f] vector. In
two-dimensional terms, we would have as well:

[x'  y']  = [x  y]  ×
a b

+ [e  f]c d

  LINEAR TRANSFORMATION  TRANSLATION

Again, this evidences that any transformation matrix
is made up to perform an affine mapping, i. e. a linear
transformation modulo a translation.

The linear component—a, b, c, d —typically allows
to apply scaling, flipping, rotation, or skew, around
the origin of the input coordinate system, while the
translation component—e, f —allows to reposition the
result within the destination space. For this reason, the
e and f attributes are often written tx and ty instead.

Here are the most common matrix patterns:

Identity:
1 0 0
0 1 0
0 0 1

translation:
1 0 0
0 1 0
tx ty 1

scaling:
sx 0 0
0 sy 0
0 0 1

rotation:
cosq – sinq 0
sinq cosq 0
0 0 1

shear:
1 0 0

– tana 1 0
0 0 1

Note that the above rotation and shear formulas fit the
default orientation of the y-axis in InDesign (i. e. values
increasing from up to bottom) and with respect to the
sign of either the ‘rotation angle’ or the ‘shear angle’ as
shown in the gui as well as in transformation settings.
These may differ from academic patterns.

In particular, for skew mapping parallel to the y-axis,
InDesign will use something like:

0 –1 0
1 tanb 0
0 0 1

where b  denotes the shear angle relative to the x-axis.
It is not difficult to see that this matrix results from
applying a 90° rotation after the shear pattern.3
Indeed, InDesign treats any skew mapping as a com-
bination of a shear-along-x and a rotation (see Figure 8).

3.	 Viz:	 [  1   0 ] × [0  -1]  (having cos 90° = 0 and sin 90° = 1).
		 -tanb 1   1  0

IDENTITY.  Strictly
identical mapping from
the source space to the
destination space.

TRANSLATION.  Takes any
(x, y ) pair to (x +tx, y +ty ).
Allows to ‘reposition’ the
object in the destination space.

SCALING.  Takes any
(x, y ) pair to (x ×sx , y ×sy ).
If sx =sy , this results in a
uniform (i.e. homothetic)
scaling.

tx sx < 1

sy > 1

ty

q

q

q
ROTATION.  Takes any (x, y ) pair
to: � ( x × cosq  + y × sinq,

-x × sinq   + y × cosq)
where q  is the counter-
clockwise rotation angle.

SHEAR (along the x-axis).
Takes any (x, y ) pair to:
  ( x - y × tana,  y)
where a is the clockwise shear
angle relative to the y-axis.

a

Figure 8.  A complex ‘skew’ mapping
(based on both horizontal and vertical
shears) is equivalent to an horizontal shear
followed by the appropriate rotation.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

07

Matrix Product

Let M and M’ be two matrices. No matter their
respective attributes, the product M × M’ always results
in a new matrix. Technically:

a b 0 a' b' 0 aa'+bc' ab'+bd' 0
c d 0 × c' d' 0 = ca'+dc' cb'+dd' 0
e f 1 e' f ' 1 ea'+fc'+e' eb'+fd'+f ' 1

where a, b, c, d, e, f  (resp. a’, b’, c’, d’, e’, f ’ ) are the numeric
attributes of M (resp. M’ ). These complex calculations
are of little interest though. What is important is to
get the meaning of the product: M × M’ reflects the
combination of the two transformations, that is, the
M-transformation followed by the M’-transformation.

For example, suppose that M represents some
scaling and M’ represents some rotation. Then,
M × M’  is the matrix that encodes the global transfor-
mation (scaling, then rotation).

At any level, whenever InDesign applies a transfor-
mation, it simply computes the product of an exist-
ing matrix (map or transformation) by an incoming
matrix. This way, successive transformations applied
to an object—in fact, to its affine map—have not to
be stored by themselves. The map is simply updated as
the result of a matrix product, and its new attributes
represent the whole effect of all transformations it has
undergone from its creation.

No matter how, and how much, you multiply transfor-
mations on an object, the result is always as simple as a
unique transformation, entirely described by six numbers,
which finally encodes the resulting affine map.

However, during the computation, the order of
transformations does matter, as M × M’ is ordinary not

equivalent to M’ × M. It is easy to check visually that
scaling first, then rotating, is not the same as perform-
ing rotation before scaling:

→
Y-SCALING (50%)

→
ROTATION (45°) A

→
ROTATION (45°)

→
Y-SCALING

(50%) B

In other words:
scaling × rotation  ≠  rotation × scaling

This inequality can be generalized to most matrix
products.

InDesign’s Canonical
Transformation Order  (S×H×R×T)

But, as an experienced user, you may have noticed
that the shape A (above) is easier to obtain than the
shape B. Indeed, atomic transformations (transla-
tion, scaling, rotation, and shear) cannot be
applied in an arbitrary order to an object via the gui—
although this could be done through scripting, as we
shall see later.

We must highlight here that every transformation
matrix M can be decomposed as a product of four
atomic matrices, in the following order:

M = S × H × R × T,
where S is a scaling matrix, H a shear matrix, R a
rotation matrix and T a translation matrix (see
the previous page for the related patterns). This canonical
decomposition is unique, and InDesign uses it as an
internal mechanism to link any transformation matrix

to a set of user-friendly attributes in the interface.
Developers will also access those attributes from the
TranformationMatrix object; namely: horizontal and
vertical scale factor (sx, sy), clockwise shear angle (a),
counterclockwise rotation angle (q ), horizontal and
vertical translation (tx, ty).

While this fact is generally overshadowed in the lit-
erature, it is of the utmost importance to understand
the underlying principle before you deal with trans-
formations. Given the matrix values (a, b, c, d, e, f  ),
InDesign automatically resolves and maintains the
correlated s×h×r×t scheme so that one always has the
relation:

a b 0 sx 0 0 1 0 0 cosq -sinq 0 1 0 0
c d 0 = 0 sy 0 × -tana 1 0 × sinq cosq 0 × 0 1 0
e f 1 0 0 1 0 0 1 0 0 1 tx ty 1
M = Scaling shear rotation transL.

This decomposition has many advantages. First, since
the translation is the final term of the product, the
(tx, ty) components are not involved with previous cal-
culations and remains independent, so (e, f) = (tx, ty).
The remaining equation has a pure 2d-linear form:

a b = sx 0 × 1 0 × cosq -sinq
c d 0 sy -tana 1 sinq cosq

Here we can see that the determinant of both the
shear and the rotation matrices is 1 (which reflects the
fact that these transformations preserves the area). So
the determinant of the entire matrix is simply sx × sy
( = a × d – b × c ). This signed value represents the area
scale factor, noting that a negative number indicates
whether the shape is mirrored.

Also, we can distinguish the neutral parameters, viz.
the identity matrix for each term: (sx, sy) = (1, 1) [no
scaling]; a = 0 [no shear]; q = 0 [no rotation].

1. Key Concepts

C O O R D I N A T E S P A C E S A N D T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C S 6 — T H E W H O L E S T O R Y   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 1 . 0

08

A matrix is invertible iff its determinant is not zero,
i. e. sx × sy ≠ 0 —here you see why InDesign does not
allow you to scale anything at 0%! In InDesign, any
(valid) transformation matrix is invertible.

Now, let’s consider a document page item. Its affine
map (M ), in its current state, can be expressed as
M = S × H × R × T (keeping the above notation).
Suppose that the user changes the shear angle from
the Transform panel. What does this mean in terms
of re-mapping?

You could think that some matrix is created, say U,
encoding the shear transformation specified by the user, and
that M is changed to M × U.

That would make perfect sense, but that’s not what
happens. InDesign does not change M to M × U,
because it does not apply any shear matrix to the exist-
ing map! Instead, it only updates the existing shear
component (H ) so that it now reflects the desired
shear angle. In other words, H just becomes H’, and
M therefore becomes S × H’ × R × T. 4

4.	 Of course the six matrix values ( a, b, c, d, tx, ty ) are recalculated
accordingly.

The same thing happens when you change the scaling
of a page item on which a rotation is already applied.
The application doesn’t compute M × Uscaling , it just
changes the map to S’ × H × R × T, where S’ denotes
the new scaling component. This is the reason why
either the order scaling-then-rotation, or rotation-then-
scaling, leads to the same result in the gui (see Figure 9).

Transformation vs. Deformation

Since a transformation in itself only affects an affine
map and does not impact the actual geometry of the
shape, it is relevant for developers to draw a formal dis-
tinction between transforming and deforming an
object. The former only deals with re-mapping coor-
dinates via transformation matrices, the latter regards
actual moves of path points relative to the inner space.

InDesign provides various ways to deform a path, that
is, the geometry of a spline item. In this regard, an
interesting operation is to select a set of path points
using the Direct Selection tool (A) and to “apply a
transformation” of whatever kind. What does happen
under the hood? InDesign does not transform the object

in the sense of updating its affine map. Instead, it
moves the points along the transformation, as shown
in Figure 10b. In this very specific case, although the
system internally performs a transformation on the set
of selected path points, no trace of this operation is
stored in the transformation matrix.

Hierarchical Mapping

As said earlier, every new object along the document
hierarchy—including groups, pages and spreads—has
its own coordinate space bound to the coordinate space
of the parent object via an affine map. Technically,
each of those affine maps is encoded in a single trans-
formation matrix. This is the way all graphic objects
are positioned relative to each other.

→
Y-SCALING (50%)

→
ROTATION (45°)

→
ROTATION (45°)

→
Y-SCALING

(50%)
S×

H×R
’×TS×H×R×T

S×H×R×T S’×H×R×T

S’×
H×R

’×T
Figure 9.
Object transformations specified from
the GUI are order-insensitive, because
at each step InDesign only has to
update a single matrix component
without altering the canonical
decomposition order (S×H×R×T).

Figure 10b.
Manually selecting all path points
with the Direct Selection tool
then changing the Y-scale results
in actually moving the points
“along the transformation.”
This is a DEFORMATION.

Figure 10a.
Changing the Y-scale of the
selected object simply
results in changing the
SCALING component of the
affine map. This is a
TRANSFORMATION.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

09

Consider the figure below. The device space (in gray)
shows an arrangement of three simple shapes based
on a group (in brown). The matrix is responsible for
mapping the coordinates from the group space to its
parent space.5 Looking in more detail we see that the
group combines two deeper elements, the orange shape
and the green shape. The and matrices are respon-
sible for positioning these respective elements into the
group (their common parent). Dashed lines indicate that
shapes emanate from child elements. Note that the
matrix applies some rotation to the green item, while
the matrix only rescales and translates the orange star
within the group space.

Finally, the green shape has a nested heart shape pasted
into it (the blue item). In terms of coordinate spaces this
dependency is entirely encoded by the matrix, which
maps the blue space into the green space.

An interesting consequence of having those maps
linked in a hierarchical way is that any object only needs
to know how to translate its own coordinate system into
the parent system, no matter what
happens at a higher or deeper
level.

5.	 In fact, the actual parent of the
group is a spread, which itself is mapped to the
pasteboard, which itself is mapped to the device space at some
point. We will discuss later these specific coordinate systems.

Figure 11.
Affine maps (encoded as
transformation matrices) match
the hierarchical organization of
page items. Each matrix is only
responsible for mapping an inner
space to the related parent space.
We may compute matrix products
to express the relationship
between two spaces of any level.
For instance the blue inner space
is connected to the device space
through the product

 ×   ×  .

(x″,y″)

(x ′,y ′)

(x ′,y ′) = (x,y)×

(x″,y″) = (x ′,y ′)× = (x,y)× ×

(X,Y) = (x″,y″)× = (x ′,y ′)× × = (x,y)× × ×

(X,Y)

(x,y)

× ×

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

10

SUMMARY

A 2d coordinate is a pair of numbers (x, y) that locate
a point relative to a given system of axes, origin, and
units—referred to as a “coordinate system.”

In InDesign every layout component (including pages
and spreads) is bound to its own coordinate system,
also known as its “inner coordinate space.”

The functional relationship between two coordinate
systems is called an “affine map.” Any affine map is
determined by a set of six real numbers, conventionally
arranged in a matrix—a “transformation matrix.”

The way we operate on such matrices might be purely
described in terms of geometrical transformations.
They address “any linear mapping of two-dimensional
coordinates, including translation, scaling, rotation, reflec-
tion, and skewing.” (InDesign SDK)1

InDesign internally reduces any transformation
matrix to a combination of four atomic transforma-
tions: scaling, shear, rotation, and translation,
in that order. This “canonical decomposition” is unique
and allows to treat separately the underlying param-
eters (scaling factors, shear angle, etc.).

1.	 Regarding transformation matrices, InDesign complies with the
rules of the PDF Specification: “A transformation matrix specifies the
relationship between two coordinate spaces. By modifying a transformation
matrix, objects can be scaled, rotated, translated, or transformed in other
ways.” (PDF 32000-1:2008, p. 117.)

When one “applies” a transformation onto an object—
say a rotation—InDesign does not really modify the
geometry of the underlying shape. Instead, the appli-
cation updates the affine map that links the coordi-
nate space of that object to the coordinate space of its
parent. Therefore, what is said a transformed object is
nothing but the same object seen from a different per-
spective and/or location.

However, under specific circumstances InDesign may
allow to use transformation tools in a way that actually
impacts the inner geometry of the target object, rather
than its affine map. This case will be referred to as a
“deformation.”2

Affine maps are chained according to the layout hier-
archy. Thanks to this mechanism transformations that
occur at any level may be described in the perspective
of any other coordinate space.

EXERCISES

001.	 Let Obj be a PageItem and (1,2,-1,0,3,1) the
matrix values of its affine map. Express in Obj’s parent
space the coordinate pair of its inner space origin.

002.	 Explain why a shear angle cannot amount to 90°.

003.	 Let G be a Group having two rectangles R1 and R2
as direct children. (None of those page items has been
scaled, skewed, or rotated yet.) Assume that the user

2.	 During a deformation, the transformation parameters have only
a temporary existence.

then select G and apply a 45° rotation to it. How do the
transformation matrices of G, R1, and R2 now look like?

004.	 Suppose that the area of some shape, measured
in its inner space, is 8pt². Let (2,3,3,6,-7,5) be the
matrix values of its affine map. What is the shape area
measured in the parent space?

005.	 Let S = (sx,0,0,sy,0,0) be a valid scaling
matrix. What is the inverse of S? [The inverse of a
matrix M is a matrix M' such that M × M' = M' × M =
identity.]

006.	 Can an InDesign user change the location of an
object relative to its parent Spread without changing at
all its affine map?

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

11

Object locations and transformations cannot be understood without a clear

comprehension of InDesign-specific coordinate spaces. This section presents those

fundamental frames to programmers before they fiddle with geometry.

Pasteboard Coordinate Space

At the very top level is the pasteboard coordi-
nate space, a kind of Galilean reference frame. It

is the global, absolute coordinate system that surrounds
the whole document.

The pasteboard1 space encompasses the entire work-
space, including interstitial areas where no object can
be laid out at all. This root entity might be seen as the
virtual parent of every document spread. We will con-
sider it a device space for the on-screen layout. InDesign
uses in fact higher coordinate systems that reflect
how the layout is shown in different views (based on
windows, scrolling, magnification…) but these do not
regard the imageable document.

Any location can be easily and univocally expressed
in the pasteboard coordinate space, whose origin is the
center of the first spread of the document. The x-axis
is horizontal with values increasing from left to right;
the y-axis is vertical with values increasing from up to
bottom (see Figure 12).

1.	 Note that the pasteboard is not represented as an object in the
InDesign Scripting DOM, which may cause some confusion. The
word ‘pasteboard’ is commonly associated with the outer region of a
page (white background) which still contains or may contain layout
items. In fact, this extra region would be rather described in terms
of spread margins, because anything that lives there is in the scope
of the corresponding spread and actually belongs to it. Due to this
confusion some settings that regard spreads are referred to as paste-
board things in the DOM. For example, the PasteboardPreference
object (available under Document and Application) exposes a
pasteboardMargins property (array of two measurement units)
which controls the width and the height of the spread margins. In
InDesign CS4 only the height of the spread margin was addressable,
via the minimumSpaceAboveAndBelow property.

X-AXIS

Y-
AX

IS
SPREAD 0

SPREAD 1

SPREAD 2

PASTEBOARD COORDINATE SPACE

Figure 12. The Pasteboard coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

12

The length along each axis is measured in points and
there is no way to change this. InDesign documents
and all basic coordinate spaces handle measurements
in PostScript points, although both Scripting DOM
and ExtendScript’s core provide tools to convert mea-
surements into other units, as this is done in the appli-
cation GUI.

Since the pasteboard is not an actual DOM object, it
has no parent and therefore no transformation matrix
bound to it—at least, nothing that we could reach
through scripting.2

Given a document, you can refer to the paste-
board coordinate space using the enumerated value
CoordinateSpaces.pasteboardCoordinates in any
method that handles coordinates. We will see later
various uses for this key.

Spread Coordinate Space

“Each spread has its own coordinate space, also known
as the inner coordinate space for a spread. The origin of the
spread coordinate space is the center of the spread. The parent
coordinate space is pasteboard coordinate space.” (InDesign
SDK, see Figure 13.)

A Spread object being known, you can directly refer to
its specific coordinate space using CoordinateSpaces.
spreadCoordinates in every method that handles coor-
dinates. Be aware that the origin of a spread coordinate
space does not coincide with the default zero point in

2.	 It is worth noting, however, that the pasteboard space origin
directly depends on the size and state of the first document spread,
meaning it may move in various circumstances, such as changing the
page size or transforming a spread. Also, facing-pages vs. non-facing-
pages documents follow distinct rules on positioning spreads.

Ruler Per Spread mode. Also, unlike the rulers coor-
dinate system (which we will study later), spread coor-
dinate spaces only address measurements in points.

As a general rule, the transformation matrix of
a spread—read: the affine map that connects this
spread space to the pasteboard space—will specify a

translation in the form:
1 0 0
0 1 0
0 ty 1

where ty represents the offset along the y-axis rela-
tive to the pasteboard space origin. Indeed, although

X-AXIS

Y-
AX

IS

SPREAD 0

SPREAD 1

SPREAD 2

SPREAD COORDINATE SPACE

Figure 13. A typical spread coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

13

spreads are
root containers for
pages and page items, they can
usually be treated from the pasteboard perspective as
simple rectangular regions ordered along the vertical
axis (see Figure 14).

But in InDesign CS4 and later spreads support
transformations, with a few restrictions though. That
is, the affine map of a spread may contain non-default
scaling, shearing and/or rotation parameters.3 As
a basic example let’s apply a 90° Rotated Spread View
on a spread. The pasteboard perspective will then look
like in Figure 15 below.

3.	 The only component that you cannot control is the translation
part. The ( tx , ty ) parameters of a spread matrix entirely depend on
automatic positioning, which in turn depends on respective spread
areas and orientation, facing-pages option, etc.

Such transformation state has of course impor-
tant consequences in terms of object locations and
metrics.

How to get details on rotated views from your scripts?
You need first to retrieve the affine map of the spread,
as follows:

// 01. Get the affine map of a spread
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var mx = mySpread.transformValuesOf(CS_PARENT)[0];
alert(mx.matrixValues);

The method transformValuesOf(anySpace) returns
a singleton array whose unique element is a matrix that
maps the caller inner space to anySpace. Therefore,
the following code:

ROTATED
SPREAD

VIEW

0 1 0
-1 0 0
0 ty 1

SPREAD 0 SPREAD 1 SPREAD 2

PASTEB
OARD SPACE

Figure 14.
In their default state spreads
are automatically mapped into
the pasteboard space through a
translation matrix, based on the
ty parameter.

ty  = 0 ty  = offset ty  = 2 × offset

Figure 15.
When a “Rotated Spread View” is
applied (from the Pages panel), the
transformation matrix of the
underlying spread space is accordingly
changed to reflect the rotation.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

14

	 anyObj.transformValuesOf(CoordinateSpaces.
parentCoordinates)[0]

always returns the affine map attached to anyObj, as
the enum value CoordinateSpaces.parentCoordinates
points out to the parent coordinate space associated to
anyObj along the hierarchy.4

We store the result, a TransformationMatrix, in the
variable mx so that we can study the underlying com-
ponents. The property mx.matrixValues reveals the
matrix parameters in the form [ a, b, c, d, tx, ty ] (array
of six numbers, keeping the notations used in the pre-
vious chapter.)

From then it’s easy to get the meaning of these data:

Matrix Values Spread Rotation State

[1, 0, 0, 1, 0, ty] Default. (No rotation applied.)

[0, 1,-1, 0, 0, ty] 90° clockwise (CW).

[0,-1, 1, 0, 0, ty] 90° counterclockwise (CCW).

[-1, 0, 0,-1, 0, ty] 180°.

Alternately the TransformationMatrix object exposes
a property, counterclockwiseRotationAngle, which
indicates the CCW rotation angle in degrees.

// 02. Display the rotation angle of a spread
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var mx = mySpread.transformValuesOf(CS_PARENT)[0];
alert(mx.counterclockwiseRotationAngle);

4.	 As we are considering a Spread object, CoordinateSpaces.
parentCoordinates is, in fact, equivalent to CoordinateSpaces.
pasteboardCoordinates. The former syntax is just more generic.

Page Coordinate Space

“Each page has its own coordinate space, also known as
the inner coordinate space for a page. The parent coordinate
space for page coordinate space is spread coordinate space.
The origin of page coordinate space is the top-left corner
of the page.” (InDesign SDK, see Figure 16.) A Page
being known, you can refer to its specific space using
CoordinateSpaces.pageCoordinates in CS6 and later.

Here again, note that the origin of a page coordinate
space is in no way determined by the zero point in

Ruler Per Page mode—users can move the zero point
anywhere in the page area. Also, unlike rulers’ coor-
dinate system, a page coordinate space only handles
measurements in points.

As a general rule, the transformation matrix of a
page—read: the affine map that connects this page
space to the parent spread space—will specify a trans-
lation in the form:

1 0 0
0 1 0
tx ty 1

X-AXIS

Y-
AX

IS

SPREAD

PAGE
COORDINATE

SPACE

Figure 16. Typical page coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

15

where tx represents an offset along the x-axis rela-
tive to the spread coordinate space, while ty stands for
some constant y-offset, as illustrated in Figure 17.

Let’s pause for a moment and try to clarify why ty is
a negative offset. A primary reflex is to think that the
translation encoded in should move the page
origin to the spread origin, which would lead to ty > 0.
That’s a misrepresentation of what the translation is.
As said earlier the purpose of the map is to convert
page-relative coordinates into spread-relative coordi-
nates. In particular, applying the map to (0,0)—i. e.,
the origin of the page in its own coordinate space—
must result in a coordinate pair (x0, y0) which positions
that origin in the spread coordinate space. Considering
PAGE 2 in the figure we clearly expect x0 = 0 and y0 < 0.
Let’s apply the affine map:

[ x0, y0, 1 ]  = [ 0, 0, 1 ] ×   = [tx,ty,1 ].
It comes tx = x0 (= 0), and ty = y0 (< 0), so we can express

the rule as follows: The affine map of a page is usually a
simple translation whose (tx, ty ) parameters reflect the
location of the page space origin relative to the parent spread
origin (i.e. the center point of the spread).

Let’s reveal these translation parameters using
Page.transformValuesOf():

// 03.	 Display the translation values of
// 		 all pages hosted by spreads[spdIndex]
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var spd = app.activeDocument.spreads[spdIndex],

pgs = spd.pages.everyItem(),
a = [].concat(pgs.transformValuesOf(CS_PARENT)
)[0],
i = a.length;

while(i--) (a[i]=a[i].matrixValues).splice(0,4);
alert(a.join('\r'));

//	 Typical result for a four-page spread
//	 in facing-pages mode
//	 ---
//		 -1200,-425
//		 -600,-425
//		 0,-425
//		 600,-425

Page Size and Location Issues

Prior to InDesign CS5 pages couldn’t be transformed
at all (that is, page affine maps couldn’t be program-
matically changed). Now Page objects support the
transform() method, meaning that we can alter the
underlying matrix so that a specific page appears trans-
formed within its parent spread.

Page transformation is Pandora’s box. It leads to both
great possibilities and unexpected troubles regarding
page coordinate spaces. First above all, you cannot
assume that page sizes are uniform anymore. Document
settings only specifies a default page size. Using the Page
Tool, the user can change the dimensions of a specific
page and /or its default location. Such effects depend
on document facing-pages options, shuffling behavior
between spreads, layout rules involving master page
inheritance mechanism, and so on.5

5.	 In InDesign CS5 and later, you cannot even be sure that the
origin of a page coordinate space will match the top-left corner of
the corresponding page! It’s easy to break rules playing with the
Page Tool or applying custom transformations to the master-to-page
matrix (Page.masterPageTransform). See next page for an example.

Figure 17.
A typical four-page spread in
its default state. As long as
pages remain untransformed,
their affine map boils down to
a simple (tx,Ty )-translation.
Note that rotating the spread
view (that is, changing the
affine map of the spread
itself) wouldn’t have any
effect on those page-to-
spread matrices (M).

PAGE 0

SPREAD

PAGE 1 PAGE 2 PAGE 3

tx0 < 0

tx2 = 0
tx1 < 0

tx3 > 0

Ty < 0

1 0 0
0 1 0
tx ty 1

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

16

When DocumentPreference.facingPages is turned
off, in particular, pages within a spread can be
freely repositioned along both the x- and the y-axis.
Depending on how this is done the user may shift the
top-left corner of the page relative to the actual origin
of its inner space (see Figure 18).

Another issue should be mentioned. The global pref-
erence app.transformPreferences.whenScaling has a
critical impact on how scaling is performed on graphic
components, including pages:

→→ WhenScalingOptions.applyToContent prevents
any scaling operation from being registered as a
transformation. In other words, scaling is treated as a

deformation, meaning that the inner geometry of the
target object is actually resized. In this context, apply-
ing some scaling transformation to a page does not
update the scaling values of its affine map. Instead, the
actual (inner) size of the page will change.6

→→ On the contrary, the option WhenScalingOptions.
adjustScalingPercentage forces InDesign to manage
scaling through transformation matrices, so that the
inner geometry of the target is not resized. In other

6.	 By contrast, transforming a spread never results in a deformation.
The printable size of a spread is determined by internal rules, disre-
garding whether that spread is transformed (e.g. scaled) and how it is
rendered in the perspective of the pasteboard coordinate space.

words, scaling a page will not change its actual inner
size. What you see from the spread perspective (“visible
size”) is not what you get on printing or exporting that
page—unless you output the spread itself.

For all these reasons, it is worth considering pages as
just rectangular items—which they actually are, under
the hood—and to compute coordinates for pages as
well as for page items, that is, relative to the parent
spread space or the pasteboard space (depending on
your needs).

As for determining the real size of a page considered
as a device space, best is to use the bounding box coor-
dinate system, as we shall see.

Figure 18.

Sample spread demoing various issues
regarding page location and size.

The actual dimensions of PAGE 0 is
300×200 (inner size) but since its affine
map PageToSpread specifies a 50%
scaling along the x-axis, it appears
reduced to 150×200 in the parent spread.
In addition, a custom transformation
MasterToPage (80% scaling + translation)
is applied to its master page relative to
the page space * before it undergoes the
page-to-spread mapping. The result
becomes pretty difficult to predict!

By contrast PAGE 1 has no scaling applied
(relative to the spread) and its
masterPageTransform matrix is
transparent (identity). However it still
has a custom size (250×250) relative to
the document settings (500×500).

In both cases we can observe that the
origin of each page coordinate space—as
revealed by the translation values of the
respective affine maps—does not
coincide with page’s top-left corner.
A vertical offset (dy=300) appears for
PAGE 0 and an horizontal offset (dx=250)
appears for PAGE 1. So, you cannot blindly
trust the “page coordinate space” system
as defined in Adobe’s documentation.

* From IDML File Format Specification
(version 8.0, page 157):
“Because the master page applied to
each page can be of a different size than
the page, InDesign provides a way to
position the contents of the master page
as they appear on the page. In IDML, this
transformation appears as the
MasterPageTransform attribute on the
<Page> element. While this is a
complete transformation matrix, only
translations are supported.”
The last statement is wrong!
Page.masterPageTransform is
available in InDesign’s DOM from CS5 and
it behaves as a fully customizable matrix.

SPREAD
(-450,-250) (-50,-250)

dy = 300 

dx = 250 

PAGE 0

M
AS

TE
R

M
AS

TE
R

PAGE 1

Origin:	 (–450, –250)
Offset:	 (0, 300)

Inner Size:	 300 × 200
Visible Size:	150 × 200

PageToSpread:	(0.5, 0,0,1, -450,-250)
MasterToPage:	(0.8,0,0,0.8, -70,100)

Default size (document settings): 500×500.

Origin:	 (–50, –250)
Offset:	 (250, 0)

Inner Size:	 250 × 250
Visible Size:	250 × 250

PageToSpread:	(1, 0,0,1, -50,-250)
MasterToPage:	(1,0,0,1,  0,0)

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

17

Finally, remember that the actual parent of any top-
level item is a Spread.7 Thus, there is no rigid connec-
tion between a page and the objects which happen to
stand on it.

Inner Coordinate Space
of a Page Item

Adobe’s documentation does not tell much about
basic PageItem’s inner coordinate space: “Each page item
has its own coordinate space, known as its inner coordinate
space. Each page item has an associated parent coordinate
space (…)” (InDesign SDK.)

Although we already know that any coordinate space
handles measurements in points and that the associ-
ated transformation matrix describes the affine map
that connects the inner coordinate space to the parent
space, a question remains unanswered:

Where exactly is located the origin of a PageItem inner
space relative to its own geometry? Can we extrapolate
what we know about spread (or page) coordinate spaces?

One might intuitively assume that, given a PageItem,
its inner space coincide with either the top-left corner,
or maybe the center point, of some intrinsic bounding
box. Unfortunately this is definitely not the case!

Let’s set up a new InDesign document having several
empty pages, then draw a basic rectangle on the last
page, using the Rectangle tool. Do not move or trans-
form the object, just run the following script:

7.	 This statement is partially wrong in CS4, where a PageItem could
still belong to a Page. However, even in CS4 the parent coordinate space
of a page-child item is the related spread coordinate space.

// 04.	 Display the transformation matrix of a
// 		 new rectangle *relative to the pasteboard*
const CS = CoordinateSpaces,
 CS_PASTEBOARD = CS.pasteboardCoordinates;
var rec = app.activeDocument.rectangles[0],
 mx = rec.transformValuesOf(CS_PASTEBOARD)[0];
alert(mx.matrixValues);
//	 Result:
//	 1,0,0,1,0,0

The result is the identity matrix, meaning that the
rectangle inner space origin, once positioned, coincides
with the pasteboard coordinate space origin8 (first-
spread’s center point), whatever the location of
the object in the document.

Now if you move the page item
from its original location using
the Selection tool and then
re-run the script, you
get of course another
result in the form
( 1,0,0,1, tx, ty ),
where (tx, ty) are the
translation values relative to the
pasteboard space—that is, the new location of the
inner space origin within the pasteboard space.

Figure 19 illustrates the case of moving a shape in terms
of matrix mapping. Let be the affine map of the page
item in its original state, the affine map of its parent
spread. The product  ×  (that is, ItemToSpread ×
SpreadToPasteboard ) results in the ItemToPasteboard

8.	 Indeed the (0,0) location in the inner space is mapped onto the
(0,0) location in the pasteboard space.

Figure 19.
Seen in the perspective of the
pasteboard, the inner space
origin of a newly created page
item coincides with the origin
of the pasteboard coordinate
space, whatever the parent
spread and the location of the
object. Then, when some
transformation is applied (e.g. a
TRANSLATION) the affine map is
updated accordingly. Anyway,
note that the “inner geometry”
does not change at all. Page
item’s path points keep the
same location relative to the
inner coordinate space.

PAGEITEM INNER SPACE

Origin

Inner geometry

PASTEB
OARD SPACE

SPREAD

T R A N S L A T I O N

 ×    = (1,0,0,1,0,0)

 ×    = (1,0,0,1, tx,ty)

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

18

matrix, which as we have just observed is the identity
mapping. In short,  ×   = identity. You can check
by yourself that this equality remains true regardless of
the transformation state of the spread at the time you
create the item. From this we can derive an interesting
property: The affine map of a newly created page item is
nothing but the inverse matrix of its parent spread affine
map.

As for  ×   , this product just reflects the transfor-
mation which the page item space globally undergoes
relative to the pasteboard space, i. e. the translation
( 1, 0, 0, 1, tx,ty ) in our example. More generally we have
something of a Chasles’ Relation between transforma-
tion matrices. Let

Mab	be the matrix that maps space A to space B,
Mbc	be the matrix that maps space B to space C,
Mac	be the matrix that maps space A to space C,

then we have Mab × Mbc = Mac .
Figure 20 helps you visualize this rule.

Moving vs. Displacing

When we move a page item using the Selection
tool, or even when we cut-and-paste this object onto
another page, the location of its path points do not
change within the inner coordinate space. That the
reason why we claim that “moving an object” actually
means applying a translation to its affine map—or,
to put it equivalently, altering the translation values
of its affine map.

Therefore, most of the time a move is a transformation.
However, as already observed, some InDesign tools
allow the user to perform a deformation instead of a
transformation.9 In such cases we will rather talk about
a displacement to avoid any confusion with regular
moves processed through translation. See Figure 21a
vs. 21b.

9.	 See Chapter 1, Key Concepts: “Transformation vs. Deformation.”

TRANSFORMATION DEFORMATION

NAME Translation
(regular move)

Displacement
(fake move)

HOW-TO
Usual means, e. g.
select and drag the
bounding box
of the page item.

“Direct-select”
path points and
drag them all to
another location.

INNER
GEOMETRY Unchanged. Changed (relative

to the origin).

LOCATION OF
THE ORIGIN

Changed
(relative to the
parent space).

Unchanged.

PASTEB
OARD SPACE

SPREAD

ITEM
 SPACE

 × 

Figure 20.
Chasles’ Relation between the
ItemToSpread matrix  , the
SpreadToPasteboard matrix  ,
and the resulting ItemToPasteboard
matrix  ×  .
It is assumed here that the page
item is a direct child of the spread.
(See figure 11 for a detailed
visualization of matrix products.)

Figure 21b.
Displacing a path, relative
to the inner origin.

Figure 21a.
Moving a page item, the
regular way (TRANSLATION).

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 2 . 1

19

SUMMARY

InDesign defines several coordinate spaces
relative to which object coordinates are
interpreted and transformations are pro-
cessed. All “InDesign coordinate spaces”

rely on a 2d orthogonal basis listed in clockwise
order and using PostScript point as canonical unit.1

→→ The pasteboard coordinate space surrounds
the whole document. Its origin is the center point of the
first spread. It has no affine map (as it represents the top
of the hierarchy). In the Scripting DOM it is referred
to as CoordinateSpaces.pasteboardCoordinates.

→→ A spread coordinate space reflects the inner
space for a specific Spread object. Its affine map,
usually a translation, links it to the pasteboard
space. Its origin is the center point of the underly-
ing spread. In the Scripting DOM it is referred to as
CoordinateSpaces.spreadCoordinates.

→→ A page coordinate space reflects the inner
space for a specific Page object. Its affine map links it
to the parent spread space. Its origin is, in most cases,
the top-left corner of the page. In the Scripting DOM
it is referred to as CoordinateSpaces.pageCoordinates
in InDesign CS6 and later.2

1.	 Bounding box and rulers coordinate systems are not pure coordi-
nate spaces. Those systems will be discussed in the next chapters.

2.	 Prior to CS6 a page coordinate space has no dedicated enum
value but it already makes sense, in the scope of a Page object, as
CoordinateSpaces.innerCoordinates.

→→ Any PageItem also has an associated inner coordi-
nate space, whose affine map is connected to the parent
coordinate space—which can be either a Spread space,
or another PageItem space depending on the document
hierarchy.3 PageItem’s inner space origin coincides
with the pasteboard origin when the item is created
and positioned, then subsequent moves are usually
processed by adjusting translation values.

→→ In addition, the Scripting DOM provides a special
keyword, CoordinateSpaces.parentCoordinates, that
refers to the parent coordinate space of any transform-
able object. The generic code
	 myObj.transformValuesOf(CoordinateSpaces.

parentCoordinates)[0]
returns a TransformationMatrix which describes the

affine map applied to myObj ’s coordinate space.

Depending on InDesign versions, Spread and/or
Page coordinate spaces can be transformed in unex-
pected ways—including rotation, scaling, and
shear. Tranforming pages may lead to obscure arti-
facts: offset of the default origin location, difference
between “inner size” and “visible size,” etc.

Chasles’ Relation applies to transformation matrix
product. Given three coordinate spaces A, B, and C,
if the matrix Mab maps A to B, and the matrix Mbc
maps B to C, then Mab × Mbc is the matrix that maps
A to C.

3.	 Fortunately (?) the parent coordinate space of a PageItem space
cannot be a page coordinate space, despite the fact that in CS4
PageItem.parent may refer to a Page. (See also page 17, note 7.)

EXERCISES

001.	 The Scripting DOM also exposes the enum value
CoordinateSpaces.innerCoordinates (which we have
not introduced yet.) Try to predict its usage and the
result of
	 anyObj.transformValuesOf(CoordinateSpaces.

innerCoordinates)[0].matrixValues
where anyObj can refer as well to a Spread, a Page, or
any PageItem in any transformation state.

002.	 Let’s set up a new Document having a single Page
(non-facing mode). In case (a) we draw an Oval at the
center of the page, then we rotate the spread view 90°
clockwise. In case (b) we rotate the spread view 90°
clockwise, then we draw an Oval at the center of the
page. Are there some differences between (a) and (b)
in terms of transformation matrices? Provide a script
that corroborates your answer.

003.	 Using the Selection tool, select the left edge of a
SplineItem’s bounding box and drag it to the left so
that the width of the underlying shape is increased.
Does this change the associated affine map? Provide a
script that corroborates your answer.

004.  A document has a unique Page whose affine map
is (0.5, -0.25, 0.25, 0.5, -125, -125). The containing
Spread has a 180° “rotated view” applied. What is the
transformation matrix of the page coordinate space
relative to the pasteboard coordinate space?

Moi
Note
TO BE CONTINUED...

	1. Key Concepts
	2D Coordinate Systems
	Affine Maps
	Relative Locations & Inner Space
	Transformations Only Re-Map Coordinates
	Maps, Transformations and Matrices
	Matrix Patterns
	Matrix Product
	InDesign’s Canonical Transformation Order
(S×H×R×T)
	Transformation vs. Deformation
	Hierarchical Mapping
	SUMMARY & EXERCISES

	2. InDesign Coordinate Spaces
	Pasteboard Coordinate Space
	Spread Coordinate Space
	Page Coordinate Space
	Page Size and Location Issues
	Inner Coordinate Space of a Page Item
	Moving vs. Displacing
	SUMMARY & EXERCISES

