AppleScript Language Guide

Developer

Contents

Introduction to AppleScript Language Guide 12
What Is AppleScript? 12

Who Should Read This Document? 13

Organization of This Document 13

Conventions Used in This Guide 14

See Also 15

AppleScript Lexical Conventions 16
Character Set 16
Identifiers 17
Keywords 17
Comments 19
The Continuation Character 19
Literals and Constants 20
Boolean 20
Constant 20
List 20
Number 20
Record 21
Text 21
Operators 21
Variables 22
Expressions 22
Statements 23
Commands 23
Results 24
Raw Codes 24

AppleScript Fundamentals 25
Script Editor Application 25
AppleScript and Objects 27

What Is in a Script Object 27

Properties 29

Elements 29

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

2

Contents

Object Specifiers 30
What Is in an Object Specifier 30
Containers 31
Absolute and Relative Object Specifiers 32
Object Specifiers in Reference Objects 32
Coercion (Object Conversion) 34
Scripting Additions 36
Commands Overview 37
Types of Commands 37
Target 38
Direct Parameter 39
Parameters That Specify Locations 40
AppleScript Error Handling 40
Global Constants in AppleScript 41
AppleScript Constant 41
current application Constant 44
missing value Constant 45
true, false Constants 45
The it and me Keywords 45
Aliases and Files 47
Specifying Paths 47
Working With Aliases 48
Working With Files 49
Remote Applications 50
Enabling Remote Applications 50
eppc-Style Specifiers 50
Targeting Remote Applications 51
Debugging AppleScript Scripts 52
Feedback From Your Script 52
Logging 52
Third Party Debuggers 53

Variables and Properties 54
Defining Properties 54
Declaring Variables 55
Local Variables 55
Global Variables 56
Using the copy and set Commands 57
Scope of Variables and Properties 60

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

3

Contents

Scope of Properties and Variables Declared in a Script Object 61
Scope of Variables Declared in a Handler 65

Script Objects 68
Defining Script Objects 68
Initializing Script Objects 70
Sending Commands to Script Objects 71
Script Libraries 72
Creating a Library 73
Using a Library 74
Inheritance in Script Objects 75
The AppleScript Inheritance Chain 75
Defining Inheritance Through the parent Property 76
Some Examples of Inheritance 76
Using the continue Statement in Script Objects 79

About Handlers 83
Handler Basics 83
Defining a Simple Handler 84
Handlers with Labeled Parameters 85
Handlers with Positional Parameters 86
Handlers with Patterned Positional Parameters 87
Handlers with Interleaved Parameters 88
Recursive Handlers 89
Errors in Handlers 90
Passing by Reference Versus Passing by Value 90
Calling Handlers in a tell Statement 91
Handlers in Script Applications 91
run Handlers 92
open Handlers 94
idle and quit Handlers for Stay-Open Applications 94
Calling a Script Application From a Script 96

Class Reference 98
alias 98

application 99
boolean 102

class 104

constant 105

date 106

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

4

Contents

file 110
integer 110
list 112
number 115
POSIX file 116
real 116
record 118

reference 120
RGB color 121
script 121
text 123
unit types 130

Commands Reference 133
activate 136

ASCII character 137
ASCIl number 138
beep 139

choose application 139
choose color 141
choose file 142

choose file name 144
choose folder 145
choose from list 147
choose remote application 149
choose URL 150
clipboard info 151
close access 152

copy 153

count 154

current date 155

delay 155

display alert 156
display dialog 158
display notification 162
do shell script 163

get 164

get eof 166

get volume settings 167

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

5

Contents

info for 167

launch 170

list disks 171

list folder 171

load script 172
localized string 172
log 175

mount volume 176
offset 177
open for access 178
open location 179
path to (application) 180
path to (folder) 182
path to resource 186
random number 187
read 188

round 191

run 193

run script 194

say 195

scripting components 196
set 197

set eof 199

set the clipboard to 200
set volume 201
store script 202
summarize 204
system attribute 205
system info 206

the clipboard 208
time to GMT 208
write 209

Reference Forms 212
Arbitrary 212

Every 213

Filter 214

ID 217

Index 218

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

6

Contents

Middle 220
Name 221
Property 222
Range 222
Relative 224

Operators Reference 226
& (concatenation) 236
text 236
record 236
All Other Classes 237
a reference to 237
Examples 237
contains, is contained by 239
list 239
record 240
text 240
equal, is not equal to 240
list 241
record 241
text 241
greater than, less than 241
date 242
integer, real 242
text 242
starts with, ends with 242
list 242
text 243

Control Statements Reference 244
considering and ignoring Statements 244
considering / ignoring (text comparison) 244
considering / ignoring (application responses) 247
error Statements 248
error 249
if Statements 250
if (simple) 250
if (compound) 251
repeat Statements 252
exit 252

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

7

Contents

repeat (forever) 253
repeat (number) times 254
repeat until 254
repeat while 255
repeat with loopVariable (from startValue to stopValue) 256
repeat with loopVariable (in list) 257
tell Statements 260
tell (simple) 260
tell (compound) 261
try Statements 262
try 262
use Statements 265
use (AppleScript) 266
use (scripting additions) 266
use (application or script) 267
use (framework) 269
using terms from Statements 270
using terms from 270
with timeout Statements 271
with timeout 272
with transaction Statements 273
with transaction 273

Handler Reference 275

continue 275

return 276

Handler Syntax (Labeled Parameters) 277

Calling a Handler with Labeled Parameters 279
Handler Syntax (Positional Parameters) 281
Calling a Handler with Positional Parameters 281
Handler Syntax (Interleaved Parameters) 282
Calling a Handler with Interleaved Parameters 283

Folder Actions Reference 284
adding folder items to 285
closing folder window for 286
moving folder window for 287
opening folder 288

removing folder items from 289

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

8

Contents

AppleScript Keywords 291

Error Numbers and Error Messages 297
AppleScript Errors 297
Operating System Errors 298

Working with Errors 301
Catching Errors in a Handler 301
Simplified Error Checking 303

Double Angle Brackets 305

When a Dictionary Is Not Available 305

When AppleScript Displays Data in Raw Format 306
Entering Script Information in Raw Format 306
Sending Raw Apple Events From a Script 307

Libraries using Load Script 308
Saving and Loading Libraries of Handlers 308

Unsupported Terms 310
List of Unsupported Terms 310

Document Revision History 311
Glossary 312

Index 320

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

9

Figures, Tables, and Listings

AppleScript Lexical Conventions 16
Table 1-1 AppleScript reserved words, listed alphabetically 18

AppleScript Fundamentals 25
Figure 2-1 The Finder dictionary in Script Editor (in OS X v10.5) 26
Table 2-1 Default coercions supported by AppleScript 35

Variables and Properties 54
Table 3-1 Scope of property and variable declarations at the top level in a script object 61
Table 3-2 Scope of variable declarations within a handler 66

Script Objects 68
Listing 4-1 A pair of script objects with a simple parent-child relationship 77

Class Reference 98
Table 6-1 Special characters in text 126
Table 6-2 White space constants 126

Commands Reference 133

Figure 7-1 Bundle structure with localized string data 174
Figure 7-2 Key/value pair for localized string data 175
Table 7-1 AppleScript commands 133

Reference Forms 212
Table 8-1 Boolean expressions and tests in filter references 217

Operators Reference 226
Table 9-1 AppleScript operators 226
Table 9-2 Operator precedence 234

AppleScript Keywords 291
Table A-1 AppleScript reserved words, with descriptions 291

Error Numbers and Error Messages 297

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

10

Figures, Tables, and Listings

Table B-1 AppleScript errors 297
Table B-2 Mac OS errors 298

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

n

Introduction to AppleScript Language Guide

This document is a guide to the AppleScript language—its lexical conventions, syntax, keywords, and other
elements. It is intended primarily for use with AppleScript 2.0 or later and OS X version 10.5 or later.

AppleScript 2.0 can use scripts developed for any version of AppleScript from 1.1 through 1.10.7, any scripting
addition created for AppleScript 1.5 or later for OS X, and any scriptable application for Mac OS v7.1 or later.
A script created with AppleScript 2.0 can be used by any version of AppleScript back to version 1.1, provided
it does not use features of AppleScript, scripting additions, or scriptable applications that are unavailable in
that version.

Important: Descriptions and examples for the terms in this document have been tested with AppleScript
2.0 in OS X v10.5 (Leopard). Except for terms that are noted as being new in Leopard, most descriptions
and examples work with previous system versions, but have not been tested against all of them.

If you need detailed information about prior system and AppleScript versions, see AppleScript Release Notes
(OS X v10.4 and earlier) .

What Is AppleScript?

AppleScript is a scripting language created by Apple. It allows users to directly control scriptable Macintosh
applications, as well as parts of OS X itself. You can create scripts—sets of written instructions—to automate
repetitive tasks, combine features from multiple scriptable applications, and create complex workflows.

Note: Apple also provides the Automator application, which allows users to automate common
tasks by hooking together ready-made actions in a graphical environment. For more information,
see Automator Documentation.

A scriptable application is one that can be controlled by a script. For AppleScript, that means being responsive
to interapplication messages, called Apple events, sent when a script command targets the application. (Apple
events can also be sent directly from other applications and OS X.)

AppleScript itself provides a very small number of commands, but it provides a framework into which you can
plug many task-specific commands—those provided by scriptable applications and scriptable parts of OS X.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

12

Introduction to AppleScript Language Guide
Who Should Read This Document?

Most script samples and script fragments in this guide use scriptable features of the Finder application, scriptable
parts of OS X, or scriptable applications distributed with OS X, such as TextEdit (located in /Applications).

Who Should Read This Document?

You should use this document if you write or modify AppleScript scripts, or if you create scriptable applications
and need to know how scripts should work.

AppleScript Language Guide assumes you are familiar with the high-level information about AppleScript found
in AppleScript Overview .

Organization of This Document

This guide describes the AppleScript language in a series of chapters and appendixes.

The first five chapters introduce components of the language and basic concepts for using it, then provide
additional overview on working with script objects and handler routines:

* “AppleScript Lexical Conventions” (page 16) describes the characters, symbols, keywords, and other
language elements that make up statements in an AppleScript script.

e “AppleScript Fundamentals” (page 25) describes basic concepts that underly the terminology and rules
covered in the rest of this guide.

e “Variables and Properties” (page 54) describes common issues in working with variables and properties,
including how to declare them and how AppleScript interprets their scope.

e “Script Objects” (page 68) describes how to define, initialize, send commands to, and use inheritance with
script objects.

e “About Handlers” (page 83) provides information on using handlers (a type of function available in
AppleScript) to factor and reuse code.

The following chapters provide reference for the AppleScript Language:
* “Class Reference” (page 98) describes the classes AppleScript defines for common objects used in scripts.
e “Commands Reference” (page 133) describes the commands that are available to any script.

e “Reference Forms” (page 212) describes the syntax for specifying an object or group of objects in an
application or other container.

* “Operators Reference” (page 226) provides a list of the operators AppleScript supports and the rules for
using them, along with sections that provide additional detail for commonly used operators.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

13

Introduction to AppleScript Language Guide
Conventions Used in This Guide

e “Control Statements Reference” (page 244) describes statements that control when and how other
statements are executed. It covers standard conditional statements, as well as statements used in error
handling and other operations.

* “Handler Reference” (page 275) shows the syntax for defining and calling handlers and describes other
statements you use with handlers.

The following chapter describes an AppleScript-related feature of OS X:

e “Folder Actions Reference” (page 284) describes how you can write and attach script handlers to specific
folders, such that the handlers are invoked when the folders are modified.

The following appendixes provide additional information about the AppleScript language and how to work
with errors in scripts:

e “AppleScript Keywords” (page 291) lists the keywords of the AppleScript language, provides a brief
description for each, and points to related information.

e “Error Numbers and Error Messages” (page 297) describes error numbers and error messages you may see
in working with AppleScript scripts.

e “Working with Errors” (page 301) provides detailed examples of handling errors with “try Statements” (page
262) and “error Statements” (page 248).

* “Double Angle Brackets” (page 305) describes when you are likely to see double angle brackets (or
chevrons—«») in scripts and how you can work with them.

* “Unsupported Terms” (page 310) lists terms that are no longer supported in AppleScript.

Conventions Used in This Guide

Glossary terms are shown in boldface where they are defined.

Important: This document sometimes uses the continuation character (—) for sample statements that don't
fit on one line on a document page. It also uses the continuation character in some syntax statements to
identify an item that, if included, must appear on the same line as the previous item. The continuation
character itself is not a required part of the syntax—it is merely a mechanism for including multiple lines
in one statement.

The following conventions are used in syntax descriptions:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

14

Introduction to AppleScript Language Guide

See Also

language Plain computer font indicates an element that you type exactly as shown. If

element there are special symbols (for example, + or &), you also type them exactly as
shown.

placeholder Italic text indicates a placeholder that you replace with an appropriate value.

[optional] Brackets indicate that the enclosed language element or elements are optional.

(a group) Parentheses group elements together.
However, the parentheses shown in “Handler Syntax (Positional
Parameters)” (page 281) are part of the syntax.

[optionall... Three ellipsis points (...) after a group defined by brackets indicate that you can
repeat the group of elements within brackets 0 or more times.

alb|c Vertical bars separate elements in a group from which you must choose a single
element. The elements are often grouped within parentheses or brackets.

Filenames shown in Most filenames shown in examples in this document include extensions, such

scripts as rtf for a TextEdit document. Use of extensions in scripts is generally
dependent on the “Show all file extensions” setting in the Advanced pane of
Finder Preferences.
To work with the examples on your computer, you may need to modify either
that setting or the filenames.

See Also

These Apple documents provide additional information for working with AppleScript:
* See Getting Started with AppleScript for a guided quick start, useful to both scripters and developers.

* See AppleScript Overview, including the chapter “Scripting with AppleScript”, for a high-level overview of
AppleScript and its related technologies.

* See Getting Started With Scripting & Automation for information on the universe of scripting technologies
available in OS X.

* See AppleScript Terminology and Apple Event Codes for a list of many of the scripting terms defined by
Apple.

For additional information on working with the AppleScript language and creating scripts, see one of the
comprehensive third-party documents available in bookstores and online.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

15

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

AppleScript Lexical Conventions

This chapter provides an overview of the vocabulary and conventions of the AppleScript Language. It starts
with the character set and introduces elements of increasing complexity.

After reading this chapter, you should have an understanding of the basic language components used to
construct AppleScript expressions and statements.
AppleScript Lexical Conventions contains the following sections:
e “Character Set” (page 16)
e “|dentifiers” (page 17)
e “Keywords” (page 17)
e “Comments” (page 19)
® “The Continuation Character” (page 19)
e “Literals and Constants” (page 20)
e “Operators” (page 21)
* “Variables” (page 22)
* “Expressions” (page 22)
* “Statements” (page 23)
e “Commands” (page 23)
® “Results” (page 24)
e “Raw Codes” (page 24)

Character Set

Starting in OS X v10.5 (AppleScript 2.0), the character set for AppleScript is Unicode. AppleScript preserves all
characters correctly worldwide, and comments and text constants in scripts may contain any Unicode characters.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

16

AppleScript Lexical Conventions
Identifiers

AppleScript syntax uses several non-ASCll characters, which can be typed using special key combinations. For
information on characters that AppleScript treats specially, see the sections “Identifiers” (page 17),
“Comments” (page 19), “Text” (page 21), “The Continuation Character” (page 19), and “Raw Codes” (page
24) in this chapter, as well as Table 9-1 (page 226) in “Operators Reference” (page 226).

Identifiers

An AppleScript identifier is a series of characters that identifies a class name, variable, or other language
element, such as labels for properties and handlers.

An identifier must begin with a letter and can contain any of these characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_

Identifiers are not case sensitive. For example, the identifiers myvariable and MyVariable are equivalent.

AppleScript remembers and enforces the first capitalization it comes across for an identifier. So if it first
encounters an identifier as myAccount, it will later, during compilation, change versions such as MyAccount
and myaccount to myAccount.

The following are examples of valid identifiers: area0fCircle, Agent@07, axis_of_rotation.
The following are not valid identifiers: C—, back&forth, 999, Why~Not.

AppleScript provides a loophole to the preceding rules: identifiers whose first and last characters are vertical
bars (|) can contain any characters. The leading and trailing vertical bars are not considered part of the identifier.

Important: This use of vertical bars can make scripts difficult to read, and is not recommended.

The following are legal identifiers: |back&forth|, [RightxNow! |.

An identifier can contain additional vertical bars preceded by a backslash (\) character, as in the identifier
| This\ |Or\ |That|.Use of the backslash character is described further in the Special String Characters section
of the text (page 123) class.

Keywords

A keyword is a reserved word in the AppleScript language. Keywords consist of lower-case, alphabetic characters:
abcdefghijklmnopgrstuvwxyz. In a few cases, such as aside from, they come in pairs.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

17

AppleScript Lexical Conventions

Keywords

Important: You should not attempt to reuse keywords in your scripts for variable names or other purposes.
Developers should not re-define keywords in the terminology for their scriptable applications.

Table 1-1 lists the keywords reserved in AppleScript 2.0 (which are the same as those used in AppleScript 1.x).

For additional information, see Table A-1 (page 291), which provides a brief description for each keyword and

points to related information, where available.

Table 1-1 AppleScript reserved words, listed alphabetically
about above after against and apart
from
around as aside from at back before
beginning behind below beneath beside between
but by considering contain contains contains
continue copy div does eighth else
end equal equals error every exit
false fifth first for fourth from
front get given global if ignoring
in instead into is it its
of
last local me middle mod my
ninth not of on onto or
out of over prop property put ref
reference repeat return returning script second
set seventh since sixth some tell
tenth that the then third through
thru timeout times to transaction true
try until where while whose with
without

18

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

AppleScript Lexical Conventions
Comments

Comments

A comment is text that is ignored by AppleScript when a script is executed. You can use comments to describe
what is happening in the script or make other kinds of notes. There are three kinds of comments:

* A block comment begins with the characters (* and ends with the characters *). Block comments must
be placed between other statements. That means they can be placed on the same line at the beginning
or end of a statement, but cannot be embedded within a simple (one-line) statement.

* An end-of-line comment begins with the characters —— (two hyphens) and ends with the end of the line:

——end-of-1ine comments extend to the end of the line

e Starting in version 2.0, AppleScript also supports use of the # symbol as an end-of-line comment. This
allows you to make a plain AppleScript script into a Unix executable by beginning it with the following
line and giving it execute permission:

#!/usr/bin/osascript

Compiled scripts that use # will run normally on pre-2.0 systems, and if edited will display using ——.
Executable text scripts using #! /usr/bin/osascript will not run on pre-2.0 systems, since the # will
be considered a syntax error.

You can nest comments—that is, comments can contain other comments, as in this example:

(* Here are some
——nested comments

(* another comment within a comment x)

The Continuation Character

A simple AppleScript statement must normally be entered on a single line. You can extend a statement to the
next line by ending it with the continuation character, —. With a U.S. keyboard, you can enter this character
by typing Option-I (lower-case L). In Script Editor, you can type Option-Return, which inserts the continuation
character and moves the insertion point to the next line.

Here is a single statement displayed on two lines:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

19

AppleScript Lexical Conventions
Literals and Constants

display dialog "This is just a test." buttons {"Great", "OK"} -
default button "OK" giving up after 3

A continuation character within a quoted text string is treated like any other character.

Literals and Constants

A literal is a value that evaluates to itself—that is, it is interpreted just as it is written. In AppleScript, for example,
"Hello" is a text literal. A constant is a word with a predefined value. For example, AppleScript defines a
number of enumerated constants for use with the path to (folder) (page 182) command, each of which
specifies a location for which to obtain the path.

Boolean

AppleScript defines the Boolean values true and false and supplies the boolean (page 102) class.

Constant

“Global Constants in AppleScript” (page 41) describes constants that can be used throughout your scripts. For
related information, see the constant (page 105) class.

List
A list defines an ordered collection of values, known as items, of any class. As depicted in a script, a list consists
of a series of expressions contained within braces and separated by commas, such as the following:

{1, 7, "Beethoven", 4.5}

A list can contain other lists. An empty list (containing no items) is represented by a pair of empty braces: {}.

AppleScript provides the list (page 112) class for working with lists.

Number

A numeric literal is a sequence of digits, possibly including other characters, such as a unary minus sign, period
(in reals), or "E+" (in exponential notation). The following are some numeric literals:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

20

AppleScript Lexical Conventions
Operators

-94596
3.1415
9.9999999999E+10

AppleScript defines classes for working with real (page 116) and integer (page 110) values, as well as the
number class, which serves as a synonym for either real or integer.

Record

A record is an unordered collection of labeled properties. A record appears in a script as a series of property
definitions contained within braces and separated by commas. Each property definition consists of a unique
label, a colon, and a value for the property. For example, the following is a record with two properties:

{product:"pen", price:2.34}

Text

A text literal consists of a series of Unicode characters enclosed in a pair of double quote marks, as in the
following example:

"A basic string."

AppleScript text objects are instances of the text (page 123) class, which provides mechanisms for working
with text. The Special String Characters section of that class describes how to use white space, backslash
characters, and double quotes in text.

Operators

An operator is a symbol, word, or phrase that derives a value from another value or pair of values. For example,
the multiplication operator (x) multiplies two numeric operands, while the concatenation operator (&) joins
two objects (such as text strings). The is equal operator performs a test on two Boolean values.

For detailed information on AppleScript’s operators, see “Operators Reference” (page 226).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

21

AppleScript Lexical Conventions
Variables

Variables

A variable is a named container in which to store a value. Its name, which you specify when you create the
variable, follows the rules described in “Identifiers” (page 17). You can declare and initialize a variable at the
same time with a copy (page 153) or set (page 197) command. For example:

set myName to "John"

copy 33 to myAge

Statements that assign values to variables are known as assignment statements.

When AppleScript encounters a variable, it evaluates the variable by getting its value. A variable is contained
in a script and its value is normally lost when you close the script that contains it.

AppleScript variables can hold values of any class. For example, you can assign the integer value 17 to a variable,
then later assign the Boolean value true to the same variable.

For more information, see “Variables and Properties” (page 54).

Expressions

An expression is any series of lexical elements that has a value. Expressions are used in scripts to represent or
derive values. The simplest kinds of expressions, called literal expressions, are representations of values in
scripts. More complex expressions typically combine literals, variables, operators, and object specifiers.

When you run a script, AppleScript converts its expressions into values. This process is known as evaluation.
For example, when the following simple expression is evaluated, the result is 21:

3 x 7 ——result: 21

An object specifier specifies some or all of the information needed to find another object. For example, the
following object specifier specifies a named document:

document named "FavoritesList"

For more information, see “Object Specifiers” (page 30).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

22

AppleScript Lexical Conventions
Statements

Statements
A statement is a series of lexical elements that follows a particular AppleScript syntax. Statements can include

keywords, variables, operators, constants, expressions, and so on.

Every script consists of statements. When AppleScript executes a script, it reads the statements in order and
carries out their instructions.

A control statement is a statement that determines when and how other statements are executed. AppleScript
defines standard control statements such as if, repeat, and while statements, which are described in detail
in “Control Statements Reference” (page 244).

A simple statement is one that can be written on a single line:

set averageTemp to 63 as degrees Fahrenheit

Note: You can use a continuation character (—) to extend a simple statement onto a second line.

A compound statement is written on more than one line, can contain other statements, and has the word
end (followed, optionally, by the first word of the statement) in its last line. For example the following is a
compound tell statement:

tell application "Finder"
set savedName to name of front window
close window savedName

end tell

A compound statement can contain other compound statements.

Commands

A command is a word or series of words used in an AppleScript statement to request an action. Every command
is directed at a target, which is the object that responds to the command. The target is usually an application
object or an object in OS X, but it can also be a script object or a value in the current script.

The following statement uses AppleScript’s get (page 164) command to obtain the name of a window; the
target is the front window of the Finder application:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

23

AppleScript Lexical Conventions
Results

get name of front window of application "Finder"

For more information on command types, parameters, and targets, see “Commands Overview” (page 37).

Results

The result of a statement is the value generated, if any, when the statement is executed. For example, executing
the statement 3 + 4 results in the value 7. The result of the statement set myText to "keyboard" isthe
text object "keyboard". A result can be of any class. AppleScript stores the result in the globally available
property result, described in “AppleScript Constant” (page 41).

Raw Codes

When you open, compile, edit, or run scripts with a script editor, you may occasionally see terms enclosed in
double angle brackets, or chevrons («»), in a script window or in another window. These terms are called raw
format or raw codes, because they represent the underlying Apple event codes that AppleScript uses to
represent scripting terms.

For compatibility with Asian national encodings, “Dahd “Oate allowed as synonyms for “«” and “»” ((Option- \
and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in some Asian encodings.

For more information on raw codes, see “Double Angle Brackets” (page 305).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

24

AppleScript Fundamentals

This chapter describes basic concepts that underlie the terminology and rules covered in the rest of this guide.
e “Script Editor Application” (page 25)
* “AppleScript and Objects” (page 27)
* “Object Specifiers” (page 30)
e “Coercion (Object Conversion)” (page 34)
e “Scripting Additions” (page 36)
e “Commands Overview” (page 37)
e “AppleScript Error Handling” (page 40)
* “Global Constants in AppleScript” (page 41)
* “The it and me Keywords” (page 45)
e “Aliases and Files” (page 47)
e “Remote Applications” (page 50)

* “Debugging AppleScript Scripts” (page 52)

Script Editor Application

The Script Editor application is located in /Applications/Utilities. It provides the ability to edit, compile,
and execute scripts, display application scripting terminologies, and save scripts in a variety of formats, such
as compiled scripts, applications, and plain text.

Script Editor can display the result of executing an AppleScript script and can display a log of the Apple events
that are sent during execution of a script. In the Script Editor Preferences, you can also choose to keep a history
of recent results or event logs.

Script Editor has text formatting preferences for various types of script text, such as language keywords,
comments, and so on. You can also turn on or off the Script Assistant, a code completion tool that can suggest
and fill in scripting terms as you type. In addition, Script Editor provides a contextual menu to insert many
types of boilerplate script statements, such as conditionals, comments, and error handlers.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

25

AppleScript Fundamentals
Script Editor Application

A dictionary is the part of a scriptable application that specifies the scripting terms it understands. You can
choose File > Open Dictionary in Script Editor to display the dictionary of a scriptable application or scripting
addition on your computer. Or you can drag an application icon to the Script Editor icon to display its dictionary
(if it has one).

To display a list that includes just the scriptable applications and scripting additions provided by OS X, choose
Window > Library. Double-click an item in the list to display its dictionary. Figure 2-1 shows the dictionary for
the Finder application in OS X v10.5. The dictionary is labeled as “Finder.sdef” The sdef format, along with
other terminology formats, is described in “Specifying Scripting Terminology” in AppleScript Overview.

Figure 2-1 The Finder dictionary in Script Editor (in OS X v10.5)

®0e '€ Finder

{4 bJ {A AJ [E- =='.'=.J L‘;i_l (Q'Terminology
Back/Forward Text Size View Print Search
Standard Suite
Finder Basics
Finder items
Containers and folders
Files
Window classes
Legacy suite

YV VTV VTYY

Standard Suite Common terms that most applications should suppc

open v : Open the specified object(s)

open specifier : list of objects to open
[using specifier] : the application file to open the object with
[with properties record] : the initial values for the properties, to be included with the open command sent to the
application that opens the direct object

print v : Print the specified object(s)

print specifier : list of objects to print
[with properties record] : optional properties to be included with the print command sent to the application that prints
the direct object

quit v : Quit the Finder
quit

activate v : Activate the specified window (or the Finder)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

26

AppleScript Fundamentals
AppleScript and Objects

There are also third-party editors for AppleScript.

AppleScript and Objects

AppleScript is an object-oriented language. When you write, compile, and execute scripts, everything you work
with is an object. An object is an instantiation of a class definition, which can include properties and actions.
AppleScript defines classes for the objects you most commonly work with, starting with the top-level

script (page 121) object, which is the overall script you are working in.

Within in a script object, you work with other objects, including:

* AppleScript objects:

AppleScript defines classes for boolean values, scripts, text, numbers, and other kinds of objects for working
in scripts; for a complete list, see “Class Reference” (page 98).

* OS X objects:

Scriptable parts of OS X and applications distributed with it, such as Finder, System Events, and Database
Events (located in /System/Library/CoreServices), define many useful classes.

* Application objects:

Third-party scriptable applications define classes that support a wide variety of features.

The following sections provide more detail about objects:
e “Whatlsina Script Object” (page 27)
* “Properties” (page 29)

* “Elements” (page 29)

What Is in a Script Object
When you enter AppleScript statements in script window in Script Editor, you are working in a top-level script
object. All script object definitions follow the same syntax, except that a top-level script object does not
have statements marking its beginning and end.
A script object can contain the following:
* Property definitions (optional):
A property is a labeled container in which to store a value.

* An explicit run handler (optional):

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

27

AppleScript Fundamentals
AppleScript and Objects

A run handler contains statements AppleScript executes when the script is run. (For more information,
see “run Handlers” (page 92).)

* Animplicit run handler (optional):

An implicit run handler consists of any statements outside of any contained handlers or script objects.
e Additional handlers (optional):

A handler is the equivalent of a subroutine. (For details, see “About Handlers” (page 83).)
e Additional script objects (optional):

A script object can contain nested script objects, each of which is defined just like a top-level script
object, except that a nested script object is bracketed with statements that mark its beginning and end.
(For details, see “Script Objects” (page 68).)

Here is an example of a simple script with one property, one handler, one nested script object, and an implicit
run handler with two statements:

property defaultClientName : "Mary Smith"

on greetClient(nameOfClient)
display dialog ("Hello " & nameOfClient & "!")

end greetClient

script testGreet
greetClient(defaultClientName)

end script

run testGreet ——result: "Hello Mary Smith!"

greetClient("Joe Jones") ——result: "Hello Joe Jones!"

The first statement in the run handleris run testGreet, which runs the nested script object testGreet.
That script object calls the handler greetClient (), passing the property defaultClientName. The
handler displays a dialog, greeting the default client, Mary Smith.

The second statement in the run handler calls greetClient () directly, passing the string ""Joe Jones".

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

28

AppleScript Fundamentals
AppleScript and Objects

Properties

A property of an object is a characteristic that has a single value and a label, such as the name property of a
window or the month property of a date. The definition for any AppleScript class includes the name and class
for each of its properties. Property names must be unique within a class. Property values can be read/write or
read only.

The AppleScript date (page 106) class, for example, defines both read/write and read only properties. These
include the weekday property, which is read only, and the month, day, and year properties, which are
read/write. That's because the value of the weekday property depends on the other properties—you can't set
an arbitrary weekday for an actual date.

The class of a property can be a simple class such as boolean (page 102) or integer (page 110), a composite
class such as a point class (made up of two integers), or a more complex class.

Most classes only support predefined properties. However, for the script (page 121) class, AppleScript lets
you to define additional properties. For information on how to do this, see “Defining Properties” (page 54).
You can also define properties for record (page 118) objects.

Elements

An element is an object contained within another object. The definition for any AppleScript class includes the
element types it can contain. An object can typically contain zero or more of each of its elements.

For a given element type, an object can contain many elements or none, and the number of elements that it
contains may change over time. For example, it is possible for a 1ist (page 112) object to contain no items (it
can be an empty list). At a later time, the same list might contain many items.

Whether you can add elements to or remove elements from an object depends on the class and the element.
For example, a text object is immutable—you cannot add or remove text once the object is created. For a
list object, you cannot remove items, but you can use the set command to add an item to the beginning
or end:

set myList to {1, "what", 3} —-result: {1, "what", 3}
set beginning of myList to @
set end of myList to "four"

myList —-result: {0, 1, "what", 3, "four"}

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

29

AppleScript Fundamentals
Object Specifiers

Object Specifiers

An object specifier specifies the information needed to find another object in terms of the objects in which
it is contained. An object specifier can refer to an application object, such as a window or file, or to an AppleScript
object, such as an item in a list or a property in a record.

An object specifier is fully evaluated (or resolved) only when a script is run, not when it is compiled. A script
can contain a valid object specifier (such as third document of application "TextEdit" that causes
an error when the script is executed (because, for example, there may be less than three documents open).

Applications typically return object specifiers in response to commands. For example, if you ask the Finder for
a window, it returns information that specifies the window object your script asked for (if it exists). The top-level
container in an object specifier is typically the application itself.

You create an object specifier every time your script uses a phrase that describes the path to an object or
property, such as name of window 1 of application "Finder".When you use the a reference
to (page 237) operator, it creates a reference (page 120) object that wraps an object specifier.

The difference between an object specifier and the object it refers to is like the difference between a building
address and the building itself. The address is a series of words and numbers, such as “2121 Oak Street, San
Francisco, CA” that identifies a location (on a street, in a city, in a state). It is distinct from the building itself. If
the building at that location is torn down and replaced with a new building, the address remains the same.

What Is in an Object Specifier

An object specifier describes an object type, a location, and how to distinguish the object from other objects
of the same type in that location. These three types of information—the type, or class; the location, or container;
and the distinguishing information, or reference form—allow you to specify any object.

In the following example, the class of the object is paragraph. The container is the phrase of document 1.
Because this phrase is inside a tel1 statement, the tell statement provides the top-level container, of
application "TextEdit". The distinguishing information (the reference form) is the combination of the
class, paragraph, and an index value, 1, which together indicate the first paragraph.

tell application "TextEdit"
paragraph 1 of document 1

end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

30

AppleScript Fundamentals
Object Specifiers

Note: If you examine the dictionary for the TextEdit application, you might think this script should
say paragraph 1 of text of document 1.However, where the meaning is unambiguous,
some applications make life easier for scripters by allowing them to omit a container from an object
specifier. TextEdit uses this feature in supplying an implicitly specified subcontainer for the textin a
document. That is, if an object specifier identifies an object, such as a word or paragraph, that is
contained in a document’s text, TextEdit automatically supplies the of text part of the object
specifier.

In addition to the index reference form, you can specify objects in a container by name, by range, by ID, and
by the other forms described in “Reference Forms” (page 212).

Containers

A container is an object that contains one or more objects or properties. In an object specifier, a container
specifies where to find an object or a property. To specify a container, use the word of or in, as in the following
statement (from a Finder te 11 block):

folder "Applications" of startup disk

A container can be an object or a series of objects, listed from the innermost to the outermost containing
object, as in the following:

tell application "Finder"
first item of first folder of first disk

end tell

You can also use the possessive form (' s) to specify containers. In the following example, the innermost
container is first window and the object it contains is a name property:

tell application "TextEdit"
first window's name

end tell

In this example, the target of the tel1 statement (" TextEdit") is the outer container for the object specifier.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

31

AppleScript Fundamentals
Object Specifiers

Absolute and Relative Object Specifiers

An absolute object specifier has enough information to identify an object or objects uniquely. It can be used
unambiguously anywhere in a script. For a reference to an application object to be absolute, its outermost
container must be the application itself, as in:

version of application "Finder" —-result: "10.5.1"

In contrast, a relative object specifier does not specify enough information to identify an object or objects
uniquely; for example:

name of item 1 of disk 2

When AppleScript encounters a relative object specifier in a tell statement, it attempts to use the default
target specified by the statement to complete the object specifier. Though it isn't generally needed, this implicit
target can be specified explicitly using the keyword it, which is described in “The it and me Keywords” (page
45).

The default target of a te 11 statement is the object that receives commands if no other object is specified.
For example, the following te 11 statement tells the Finder to get a name using the previous relative object
specifier.

tell application "Finder"
name of item 1 of disk 2

end tell

When AppleScript encounters a relative object specifier outside any tell statement, it tries to complete the
object specifier by looking up the inheritance chain described in “Inheritance in Script Objects” (page 75).

Object Specifiers in Reference Objects

When you can create a reference (page 120) object with the a reference to (page 237) operator, it contains
an object specifier. For example:

tell application "TextEdit"
set docRef to a reference to the first document
——result: document 1 of application "TextEdit"

—— an object specifier

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

32

AppleScript Fundamentals
Object Specifiers

name of docRef —-result: "New Report.rtf"
—— name of the specified object

end tell

In this script, the variable docRef is a reference whose object specifier refers to the first document of the
application TextEdit—which happens to be named “New Report.rtf” in this case. However, the object that
docRef refers to can change. If you open a second TextEdit document called “Second Report.rtf” so that its
window is in front of the previous document, then run this script again, it will return the name of the
now-frontmost document, “Second Report.rtf’

You could instead create a reference with a more specific object specifier:

tell application "TextEdit"
set docRef to a reference to document "New Report.rtf"
——result: document "New Report.rtf" of application "TextEdit"
name of docRef —-result: "New Report.rtf"

end tell

If you run this script after opening a second document, it will still return the name of the original document,
“New Report.rtf’ if the document exists.

After you create a reference object withthea reference to operator, you can use the contents property
to get the value of the object that it refers to. That is, using the contents property causes the reference’s
object specifier to be evaluated. In the following script, for example, the content of the variable myWindow is

the window reference itself.

set myWindow to a ref to window "Ql.rtf" of application "TextEdit"

myWindow

—— result: window "Ql.rtf" of application "TextEdit" (object specifier)

contents of myWindow

——result: window id 283 of application "TextEdit" (an evaluated window)

get myWindow

—— result: window "Ql.rtf" of application "TextEdit" (object specifier)

Note that the result of the get command is to return the reference’s object specifier, not to resolve the specifier
to the object it specifies.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

33

AppleScript Fundamentals
Coercion (Object Conversion)

When it can, AppleScript will implicitly dereference a reference object (without use of the contents property),
as in the following example:

set myWindow to a ref to window 1 of application "TextEdit"

name of myWindow ——result: "Ql.rtf" (if that is the first window's name)

For related information, see the Discussion section for the reference (page 120) class.

Coercion (Object Conversion)

Coercion (also known as object conversion) is the process of converting objects from one class to another.
AppleScript converts an object to a different class in either of these circumstances:

* inresponse to the as operator

* automatically, when an object is of a different class than was expected for a particular command or
operation

Not all classes can be coerced to all other class types. Table 2-1 summarizes the coercions that AppleScript
supports for commonly used classes. For more information about each coercion, see the corresponding class
definition in “Class Reference” (page 98).

AppleScript provides many coercions, either as a built-in part of the language or through the Standard Additions
scripting addition. You can use these coercions outside of a tell block in your script. However, coercion of
application class types may be dependent on the application and require a tell block that targets the
application.

The as operator specifies a specific coercion. For example, the following statement coerces the integer 2 into
the text "'2" before storing it in the variable myText:

set myText to 2 as text

If you provide a command parameter or operand of the wrong class, AppleScript automatically coerces the
operand or parameter to the expected class, if possible. If the conversion can’t be performed, AppleScript
reports an error.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

34

AppleScript Fundamentals
Coercion (Object Conversion)

When coercing text strings to values of class integer, number, or real, or vice versa, AppleScript uses the
current Numbers settings in the Formats pane in International preferences to determine what separators to
use in the string. When coercing strings to values of class date or vice versa, AppleScript uses the current
Dates settings in the Formats pane.

Table 2-1 Default coercions supported by AppleScript

Convert from class To class Notes
alias (page 98) list (single-item)
text
application (page 99) list (single-item) This is both an AppleScript class and

an application class.

boolean (page 102) integer

list (single-item)

text
class (page 104) list (single-item)
text
constant (page 105) list (single-item)
text
date (page 106) list (single-item)
text
file (page 110) list (single-item)
text
integer (page 110) list (single-item) Coercing an integer to a number
real does not change its class.
text
list (page 112) any class to which the item can
(single-item) be coerced if it is not part of a
list
list (page 112) text, if each of the items in the
(multiple-item) list can be coerced to a text
object

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

35

AppleScript Fundamentals
Scripting Additions

Convert from class

number (page 115)

POSIX file (page 116)

real (page 116)

record (page 118)

reference (page 120)

script (page 121)

text (page 123)

unit types (page 130)

To class

integer
list (single-item)
real

text

see file

integer

list (single-item)

list

any class to which the
referenced object can be

coerced
list (single-item)

integer
list (single-item)

real

integer
list (single-item)
real

text

Scripting Additions

A scripting addition is a file or bundle that provides handlers you can use in scripts to perform commands

and coercions.

Notes

Values identified as values of class
number are really values of either
class integer or class real.

POSIX fileisa pseudo-class
equivalent to the file class.

In coercing to integer, any
fractional part is rounded.

Coercing a real to a number does
not change its class.

All labels are lost in the coercion and
the resulting list cannot be coerced
back to a record.

Can coerceto integer or realonly
if the text object represents an
appropriate number.

Can coerce between unit types in the
same category, such as inches to
kilometers (length) orgallons to
liters (liquid volume).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

36

AppleScript Fundamentals
Commands Overview

Many of the commands described in this guide are defined in the Standard Additions scripting addition in OS
X. These commands are stored in the file StandardAdditions.osaxin
/System/Library/ScriptingAdditions, and are available to any script. You can examine the terminology
for the Standard Additions by opening this file in Script Editor.

Note: A script can obtain the location of the Standard Additions with this script statement, which
uses the path to (folder) (page 182) command:

path to scripting additions as text

——result: "Hard_Disk:System:Library:ScriptingAdditions:"

Scripting additions can be embedded within bundled script applets by placing them in a folder named
Scripting Additions (note the space between “Scripting” and “Additions”) inside the bundle’ll s
Contents/Resources/ folder. Note that Script Editor does not look for embedded scripting additions when
editing bundled applets. During script development, any required scripting additions must be properly installed
in /System/ScriptingAdditions, /Library/ScriptingAdditions, or
~/Library/ScriptingAdditions so that Script Editor can find them.

Developers can create their own scripting additions, as described in Technical Note TN1164, Scripting Additions
for Mac OS X. For related conceptual information, see AppleScript Overview, particularly the section “Extending
AppleScript with Coercions, Scripting Additions, and Faceless Background Applications” in the chapter “Open
Scripting Architecture”.

Commands Overview

A command is a word or a series of words used in AppleScript statements to request an action. Every command
is directed at a target, which is the object that responds to the command. The target is often an application
object (one that is stored in an application or its documents and managed by the application, such as a window
or document) or an object in OS X. However, it can also be a script object or a value in the current script.

Commands often return results. For example, the display dialog (page 158) command returns a record that
may contain text, a button name, and other information. Your script can examine this record to determine
what to do next. You can assign the result of a command to a variable you define, or access it through the
predefined AppleScript result variable.

Types of Commands

Scripts can make use of the following kinds of commands:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

37

AppleScript Fundamentals
Commands Overview

* An AppleScript command is one that is built into the AppleScript language. There currently are five such
commands: get (page 164), set (page 197), count (page 154), copy (page 153), and run (page 193). Except
for copy, each of these commands can also be implemented by applications. That is, there is an AppleScript
version of the command that works on AppleScript objects, but an application can define its own version
that works on the object types it defines.

* Ascripting addition command is one that is implemented through the mechanism described in “Scripting
Additions” (page 36)). Although anyone can create a scripting addition (see Technical Note TN1164,
Scripting Additions for Mac OS X), this guide documents only the scripting addition commands from the
Standard Additions, supplied by Apple as part of OS X. These commands are available to all scripts.

* Auser-defined command is one that is implemented by a handler defined in a script object. To invoke
a user-defined command outside of a tell statement, simply use its name and supply values for any
parameters it requires. The command will use the current script as its target.

To invoke a user-defined command inside a te 11 statement, see “Calling Handlers in a tell Statement” (page
91).

* An application command is one that is defined by scriptable application to provide access to a scriptable
feature. They are typically enclosed in a tel1l statement that targets the application. You can determine
which commands an application supports by examining its dictionary in Script Editor.

Scriptable applications that ship with OS X, such as the Finder and System Events applications (located in
/System/Library/CoreServices), provide many useful scripting commands.

Third-party scriptable applications also provide commands you can use in scripts. Many support all or a
subset of the Standard commands, described in Technical Note TN2106, Scripting Interface Guidelines.
These include commands such as delete, duplicate, exists, and move, as well as application
implementations of AppleScript commands, such as get and set.

Target

There are two ways to explicitly specify an object as the target of a command: by supplying it as the direct
parameter of the command (described in the next section) or by specifying it as the target of a te 11 statement
that contains the command. If a script doesn't explicitly specify the target with a tell statement, and it isn’t
handled by a handler in the script or by AppleScript itself, it is sent to the next object in the inheritance chain
(see “The AppleScript Inheritance Chain” (page 75)).

In the following script, the target of the get (page 164) command is the object specifier name of first
window. Because the enclosing tell statement specifies the Finder application, the full specifier is name of
first window of application "Finder",and itisthe Finder application which obtains and returns the
requested information.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

38

AppleScript Fundamentals
Commands Overview

tell application "Finder"
get name of first window

end tell

When a command targets an application, the result may be an application object. If so, subsequent statements
that target the result object are sent to the application.

A script may also implicitly specify a target by using an application command imported using a use (page ?)
statement. For example, the extract address command in the following script targets the Mail application
because the command was imported from Mail:

use application "Mail"

extract address from "John Doe <jdoe@example.com>"

Direct Parameter

The direct parameter is a value, usually an object specifier, that appears immediately next to a command and
specifies the target of the command. Not all commands have a direct parameter. If a command can have a
direct parameter, it is noted in the command’s definition.

In the following statement, the object specifier last file of window 1 of application "Finder"is
the direct parameter of the duplicate command:

duplicate last file of window 1 of application "Finder"

The direct parameter usually appears immediately after the command, but may also appear immediately before
it. This can be easier to read for some commands, such as exists in this example:

if file "semaphore" of application "Finder" exists then
—— continue processing...

end if

A tell statement specifies a default target for all commands contained within it, so the direct parameter is
optional. The following example has the same result as the previous example:

tell last file of window 1 of application "Finder"
duplicate
end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

39

AppleScript Fundamentals
AppleScript Error Handling

Parameters That Specify Locations

Many commands have parameters that specify locations. A location can be either an insertion point or another
object. An insertion point is a location where an object can be added.

In the following example, the to parameter specifies the location to which to move the first paragraph. The
value of the to parameter of the duplicate command is the relative object specifier before paragraph
4, which is an insertion point. AppleScript completes the specifier with the target of the te 11 statement, front
document of application "TextEdit".

tell front document of application "TextEdit"
duplicate paragraph 1 to before paragraph 4
end tell

The phrases paragraph 1and before paragraph 4 are called index and relative references, respectively.
For more information, see “Reference Forms” (page 212).

AppleScript Error Handling

During script execution, errors may occur due to interaction with OS X, problems encountered in an application
script command, or problems caused by statements in the script itself. When an error occurs, AppleScript stops
execution at the current location, signals an error, and looks up the calling chain for script statements that can
handle the error. That is, it looks for the nearest error-handling code block that surrounds the location where
the error occurred.

Scripts can handle errors by enclosing statements that may encounter an error within a t ry (page 262) statement.
The try statement includes an on error section that is invoked if an error occurs. AppleScript passes
information about the error, including an error number and an error message, to the on error section. This
allows scripts to examine the error number and to display information about it.

If the error occurs within a handler that does not provide a try statement, AppleScript looks for an enclosing
try statement where the handler was invoked. If none of the calls in the call chain is contained ina try
statement, AppleScript stops execution of the script and displays an error message (for any error number other
than -128, described below).

A script can use an error (page 249) statement to signal an error directly. Doing so invokes the AppleScript
error handling mechanism, which looks for an enclosing try statement to handle the error.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

40

AppleScript Fundamentals
Global Constants in AppleScript

Some “errors” are the result of the normal operation of a command. For example, commands such as display
dialog (page 158) and choose file (page 142)signalerror —128 (User canceled), if the user clicks the Cancel
button. Scripts routinely handle the user canceled error to ensure normal operation. For an example of how
to do this, see the Examples section for the display dialogcommand.If no try statementin a script handles
the -128 error, AppleScript halts execution of the script without displaying any error message.

For related information, see “Results” (page 24), “error Statements” (page 248), “try Statements” (page 262),
“Error Numbers and Error Messages” (page 297), and “Working with Errors” (page 301).

Global Constants in AppleScript

AppleScript defines a number of global constants that you can use anywhere in a script.

AppleScript Constant
The global constant AppleScript provides access to properties you can use throughout your scripts.

You can use the AppleScript identifier itself to distinguish an AppleScript property from a property of the
current target with the same name, as shown in the section “version” (page 44).

The following sections describe additional properties of AppleScript.

pi
This mathematical value represents the ratio of a circle's circumference to its diameter. It is defined as a real
number with the value 3.14159265359.

For example, the following statement computes the area of a circle with radius 7:

set circleArea to pi * 7 * 7 ——result: 153.9380400259

result

When a statement is executed, AppleScript stores the resulting value, if any, in the predefined property resu'lt.
The value remains there until another statement is executed that generates a value. Until a statement that
yields a result is executed, the value of result is undefined. You can examine the result in Script Editor by
looking in the Result pane of the script window.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

41

AppleScript Fundamentals
Global Constants in AppleScript

Note: When an error occurs during script execution, AppleScript signals an error. It doesn’t return
error information in the result property. For more information, see “AppleScript Error
Handling” (page 40).

Text Constants

AppleScript defines the text properties space, tab, return, linefeed, and quote. You effectively use these
properties as text constants to represent white space or a double quote (') character. They are described in
the Special String Characters section of the text (page 123) class.

text item delimiters

AppleScript provides the text item delimiters property for use in processing text. This property consists
of a list of strings used as delimiters by AppleScript when it coerces a list to text or gets text items from text
strings. When getting text items of text, all of the strings are used as separators. When coercing a list to
text, the first item is used as a separator.

Note: Prior to OS X Snow Leopard v10.6, AppleScript only used the first delimiter in the list when
getting text items.

Because text item delimiters respect consideringand ignoring attributesin AppleScript 2.0, delimiters
are case-insensitive by default. Formerly, they were always case-sensitive. To enforce the previous behavior,
add an explicit considering case statement.

You can get and set the current value of the text item delimiters property. Normally, AppleScript doesn't
use any delimiters. For example, if the text delimiters have not been explicitly changed, the statement

{"bread", "milk", "butter", 10.45} as string

returns the following:

"breadmilkbutter10.45"

For printing or display purposes, it is usually preferable to set text item delimiters to something that's
easier to read. For example, the script

set AppleScript's text item delimiters to {", "}

{"bread", "milk", "butter", 10.45} as string

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

42

AppleScript Fundamentals
Global Constants in AppleScript

returns this result:

"bread, milk, butter, 10.45"

The text item delimiters property can be used to extract individual names from a pathname. For example,
the script

set AppleScript's text item delimiters to {":"}

get last text item of "Hard Disk:CD Contents:Release Notes"

returns the result "Release Notes".

If you change the text item delimiters property in Script Editor, it remains changed until you restore its
previous value or until you quit Script Editor and launch it again. If you change text item delimitersin

a script application, it remains changed in that application until you restore its previous value or until the script
application quits; however, the delimiters are not changed in Script Editor or in other script applications you

run.

Scripts commonly use an error handler to reset the text item delimiters property to its former value if
an error occurs (for more on dealing with errors, see “AppleScript Error Handling” (page 40)):

set savedDelimiters to AppleScript's text item delimiters
try
set AppleScript's text item delimiters to {"*x"
——other script statements...
—-—-now reset the text item delimiters:
set AppleScript's text item delimiters to savedDelimiters
on error m number n
—-also reset text item delimiters in case of an error:
set AppleScript's text item delimiters to savedDelimiters
——and resignal the error:
error m number n

end try

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

43

AppleScript Fundamentals
Global Constants in AppleScript

version

This property provides the current version of AppleScript. The following script shows how to check for a version
greater than or equal to version 1.9. The if statement is wrapped in a considering numeric strings
statement so that an AppleScript version such as 1.10.6 compares as larger than, say, version 1.9.

considering numeric strings
if version of AppleScript as string = "1.9" then
—— Perform operations that depend on version 1.9 or greater
else
—— Handle case where version is not high enough
end if

end considering

Applications can have their own version property, so to access the AppleScript version explicitly, you use
the phrase version of AppleScript. This will work inside a tell block that targets another application,
such as the following:

tell application "Finder"
version ——result: "10.5.1"
version of AppleScript ——result: "2.0"

end tell

current application Constant

The current application constant refers to the application that is executing the current AppleScript script
(for example, Script Editor). Because the current application is the parent of AppleScript (see “The AppleScript
Inheritance Chain” (page 75)), it gets a chance to handle commands that aren’t handled by the current script
or by AppleScript.

The current application constantis an object specifier—if you ask AppleScript for its value, the result is
the object specifier:

get current application —-result: current application

However, if you ask for name of current application, AppleScript resolves the object specifier and
returns the current application’s name:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

44

AppleScript Fundamentals
The it and me Keywords

name of current application —-result: "Script Editor"

missing value Constant

Themissing value constant is a placeholder for missing or uninitialized information.

For example, the following statements use themissing value constant to determine if a variable has changed:

set myVariable to missing value

—— perform operations that might change the value of myVariable
if myVariable is equal to missing value then

—— the value of the variable never changed
else

—— the value of the variable did change

end if

true, false Constants

AppleScript defines the Boolean constants true and false. These constants are described with the
boolean (page 102) class.

The it and me Keywords

AppleScript defines the keyword me to refer to the current script and the keyword it to refer to the current
target. (The current script is the one that is currently being executed; the current target is the object that is
the current default target for commands.) It also defines my as a synonym for of me and its as a synonym
forof ift.

If a script hasn't targeted anything, it and me refer to the same thing—the script—as shown in the following
example:

—— At the top-level of the script:
me ——result: «script» (the top-level script object)

it ——result: «script» (same as it, since no target set yet)

A tell statement specifies a default target. In the following example, the default target is the Finder application:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

45

AppleScript Fundamentals
The it and me Keywords

—— Within a tell block:
tell application "Finder" —-— sets target
me ——result: «script» (still the top-level script object)
it ——result: application "Finder" (target of the tell statement)

end tell

You can use the words of me or my to indicate that the target of a command is the current script and not the
target of the tell statement. In the following example, the word my indicates that minimumValue () handler
is defined by the script, not by Finder:

tell application "Finder"
set fileCount to count files in front window
set myCount to my minimumValue(fileCount, 100)
——do something with up to the first 100 files..
end tell

You can also use of me or my to distinguish script properties from object properties. Suppose there is a TextEdit
document open named “Simple.rtf”:

tell document 1 of application "TextEdit"
name —--result: "Simple.rtf" (implicitly uses target of tell)
name of it —-result: "Simple.rtf" (specifies target of tell)
me ——result: «script» (top-level script object, not target of tell)

end tell

The following example shows how to specify different version properties in a Finder tel1 statement. The
Finder is the default target, but using version of me,my version,orversion of AppleScript allows
you to specify the version of the top-level script object. (The top-level script object returns the AppleScript
version, because it inherits from AppleScript, as described in “The AppleScript Inheritance Chain” (page 75).)

tell application "Finder"
version ——result: "10.5.1" (Finder version is the default in tell block)
its version ——result: "10.5.1" (specifically asks for Finder version)
version of me ——result: "2.0" (AppleScript version)

my version ——result: "2.0" (AppleScript version)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

46

AppleScript Fundamentals
Aliases and Files

version of AppleScript ——result: "2.0" (AppleScript version)

end tell

For information on using it in a filter reference, see the Discussion section for the “Filter” (page 214) reference
form.

Aliases and Files
To refer to items and locations in the OS X file system, you use alias (page 98) objects and file (page 110)

objects.

An alias object is a dynamic reference to an existing file system object. Because it is dynamic, it can maintain
the link to its designated file system object even if that object is moved or renamed.

A file object represents a specific file at a specific location in the file system. It can refer to an item that does
not currently exist, such as the name and location for a file that is to be created. A file object is not dynamic,
and always refers to the same location, even if a different item is moved into that place. The POSIX file (page
116) pseudo-class is roughly synonymous with file: POSIX f1i'le specifiers evaluate to a file object, but they
use different semantics for the name, as described in “Specifying Paths” (page 47).
The following is the recommended usage for these types:

* Usean alias object to refer to existing file system objects.

* Use a file object to refer to a file that does not yet exist.

e UseaP0SIX file specifier if you want to specify the file using a POSIX path.

The following sections describe how to specify file system objects by path and how to work with them in your
scripts.

Specifying Paths

You can create alias objects and file objects by supplying a name specifier, where the name is the path
to an item in the file system.

For alias and file specifiers, the path is an HFS path, which takes the form

is the HFS path to the Mail application, assuming your boot drive is named "Hard_Disk".

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

47

AppleScript Fundamentals
Aliases and Files

HFS paths with a leading colon, such as "': folder: file", are resolved relative to the HFS working directory.
However, their use is discouraged, because the location of the HFS working directory is unspecified, and there
is no way to control it from AppleScript.

For POSIX file specifiers, the path is a POSIX path, which takes the form
"/item/subitem/subsubitem/.../item". The disk name is not required for the boot disk. For example,
"/Applications/Mail.app" is the POSIX path to the Mail application. You can see the POSIX path of an
item in Finder in the "Where" field of its Get Info window. Despite the name, POSIX file specifiers may refer to
folders or disks. Use of "~"" to specify a home directory is not supported.

POSIX paths without a leading slash, such as " folder/file", are resolved relative to the POSIX working
directory. This is supported, but only is useful for scripts run from the shell—the working directory is the current
directory in the shell. The location of the POSIX working directory for applications is unspecified.

Working With Aliases

AppleScript defines the alias (page 98) class to represent aliases. An alias can be stored in a variable and
used throughout a script.

The following script first creates an alias to an existing file in the variable notesAlias, then uses the variable
in a tell statement that opens the file. It uses a try (page 262) statement to check for existence of the alias
before creating it, so that the alias is only created once, even if the script is run repeatedly.

try
notesAlias —— see if we've created the alias yet
on error
—— if not, create it in the error branch
set notesAlias to alias "Hard_Disk:Users:myUser:Feb_Notes.rtf"
end try
—— now open the file from the alias:

tell application "TextEdit" to open notesAlias

Finding the object an alias refers to is called resolving an alias. AppleScript 2.0 attempts to resolve aliases only
when you run a script. However, in earlier versions, AppleScript attempts to resolve aliases at compile time.

Once you run the previous example, creating the alias, the script will be able to find the original file when you
run it again, even if the file’s name or location changes. (However, if you run the script again after recompiling
it, it will create a new alias.)

You can get the HFS path from an alias by coercing it to text:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

48

AppleScript Fundamentals
Aliases and Files

notesAlias as text —-result: "Hard_Disk:Users:myUser:Feb_Notes.rtf"

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

POSIX path of notesAlias ——result: "/Feb_Notes.rtf"

If an alias doesn’t refer to an existing file system object then it is broken. You can’t create an alias to an object
that doesn't exist, such as a file you plan to create. For that you use a file object, described in the next section.

For a sample script that shows how a script application can process a list of aliases it receives when a user
drops one or more file icons on it, see “open Handlers” (page 94).

Working With Files

AppleScript uses file objects to represent files in scripts. A file object can be stored in a variable and used
throughout a script. The following script first creates a f i le object for an existing file in the variable notesFile,
then uses the variable in a tell statement that opens the file:

set notesFile to POSIX file "/Users/myUser/Feb_Meeting_Notes.rtf"

tell application "TextEdit" to open notesFile

You can use a file object to specify a name and location for a file that may not exist:

set newFile to POSIX file "/Users/myUser/BrandNewFile.rtf"

Similarly, you can let a user specify a new file with the choose file name (page 144) command, then use the
returned file object to create the file. In the following example, if the user cancels the choose file name
dialog, the rest of the script is not executed. If the user does supply a file name, the script opens the file, creating
it if necessary, then uses a try statement to make sure it closes the file when it is finished writing to it.

set theFile to choose file name
set referenceNumber to open for access theFile with write permission
try
—— statements to write to the file
on error
close access referenceNumber

end try

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

49

AppleScript Fundamentals
Remote Applications

close access referenceNumber

Typically, when you pass a file object to a command that uses it to operate on a new or existing item in the
file system, the components of the path must exist for the command to succeed.

Remote Applications

A script can target an application on a remote computer if remote applications are enabled on that computer,
and if the script specifies the computer with an eppc-style specifier.

Enabling Remote Applications

For a script to send commands to a remote application, the following conditions must be satisfied:

* The computer that contains the application and the computer on which the script is run must be connected
to each other through a network.

* Remote Apple Events (set in the Sharing preferences pane) must be enabled on the remote computer and
user access must be provided (you can allow access for all users or for specified users only).

* If the specified remote application is not running, you must run it.

* You must authenticate as admin when you compile or run the script.

eppc-Style Specifiers

An eppc-style specifier takes the following format:

eppc://[user[:password]@]IP_address

ip_address
Either a numeric IP address in dotted decimal form (four numbers, from 0 to 255, separated by periods;
for example, 123.23.23.123) or a hostname. A hostname can be a Bonjour name.

The following are examples of valid eppc-style specifiers. If you supply the user name and password, no
authentication is required. If you do not supply it, authentication may be required.

"eppc://myCoolWMac. local" —— hostname, no user or pwd

"eppc://myUserName: pwd@myCoolMac. local" —- user, pwd, and hostname

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

50

AppleScript Fundamentals
Remote Applications

"eppc://123.23.23.123" — IP address, no user or pwd
"eppc://myUserName: pwd@123.23.23.123" —— user, pwd, and IP address
"eppc://myUserName@server.company.com" —— server address, user

Important: If a part of the eppc-style specifier contains non-UTF-8 characters or white space, it must be
URL-encoded: for example, here is a user name that contains a space:

John%20Smith.

Targeting Remote Applications

You can target an application that is running on a remote machine and you can launch applications on remote
machines that are not currently running.

The following example uses an eppc-style specifier to target the Finder on a remote computer. It includes a
user name and password, so no authentication is required.

set remoteMachine to "eppc://userName:pwd@acName. local"

tell app "Finder" of machine remoteMachine to close front window

Important: If you compile an erroneous eppc-style address, you will have to quit and relaunch Script Editor
for changes to that address to take effect.

In some cases, yoU'll need to use a using terms from (page 270) statement to tell AppleScript to compile

against the local version of an application. The following example uses that technique in telling the remote
Finder application to open the TextEdit application:

set remoteFinder to application "Finder" of machine -

"eppc://myUserName: pwd@123.23.23.123"

using terms from application "Finder"

tell remoteFinder

open application file id "com.apple.TextEdit"
end tell

end using terms from

If you omit the password (pwd) in the previous script, you will have to authenticate when you run the script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

51

AppleScript Fundamentals
Debugging AppleScript Scripts

Debugging AppleScript Scripts

AppleScript does not include a built-in debugger, but it does provide several simple mechanisms to help you
debug your scripts or just observe how they are working.

Feedback From Your Script

You can insert various statements into a script to indicate the current location and other information. In the
simplest case, you can insert a beep command in a location of interest:

beep 3 —— three beeps; a very important part of the script!

A display dialog (page 158) command can display information about what’s happening in a script and, like
a breakpoint, it halts execution until you dismiss it (or until it times out, depending on the parameters you
pass). The following example displays the current script location and the value of a variable:

display dialog "In factorial routine; x =" & (x as string)

The say (page 195) command can get your attention by speaking the specified text. In the following example,
currentClient is a text object that stores a client name:

say "I'm in the clientName handler. The client is " & currentClient

Logging
Script Editor can display a log of the Apple events that are sent during execution of a script. In the Script Editor
Preferences, you can also choose to keep a history of recent results or event logs.

In addition, you can insert log (page 175) statements into a script. Log output is shown in the Event Log pane
of a script window, and also in the Event Log History window, if it is open.

The following simple example logs the current word in a repeat with loopVariable (in list) (page 257)
statement:

set wordList to words in '"Where is the hammer?"
repeat with currentWord in wordList
log currentWord
if contents of currentWord is equal to "hammer" then

display dialog "I found the hammer!"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

52

AppleScript Fundamentals
Debugging AppleScript Scripts

end if

end repeat

The following shows how the words appear in the log when the script is run:

(*xWherex)
(kisx)
(*xthex)

(*xhammerx)

Third Party Debuggers
If you need full-featured debugging capabilities, there are powerful, third-party AppleScript debuggers available.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

53

Variables and Properties

Variables and properties are introduced in previous chapters in this document. You use them in script objects

to store and manipulate values.

Important: In reading this chapter, you should be familiar with the information on implicit and explicit
run handlers in “run Handlers” (page 92).

The following sections cover common issues in working with variables and properties, including how to declare
them and how AppleScript interprets their scope in a script:

e “Defining Properties” (page 54)
® “Declaring Variables” (page 55)
® “Scope of Variables and Properties” (page 60)

Defining Properties

Property labels follow the rules described in “Identifiers” (page 17).
Property definitions use the following syntax:

property propertyLabel : expression

propertyLabel
An identifier.

expression
An AppleScript expression that sets the initial value for the property. Property definitions are evaluated
before variable assignments, so property definitions cannot contain variables.

The following are examples of valid property definitions:

property windowCount : @
property defaultName : "Barry"
property strangeValue : (pi * 7)72

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

54

Variables and Properties
Declaring Variables

After you define a property, you can change its value with the copy (page 153) or set (page 197) command.

The value set by a property definition is not reset each time the script is run; instead, it persists until the script
is recompiled.

You cannot declare a property in a handler but a handler can access a property defined in its containing script
object.

Declaring Variables
Variable names follow the rules described in “Identifiers” (page 17).
To create a variable in AppleScript, you assign it a value using the copy (page 153) or set (page 197) command.

For example, the following statements create and initialize two variables, one named circumference and
one named savedResult:

set circumference to pi * 3.5 ——result: 10.995574287564
copy circumference to savedResult ——result: 10.995574287564 (copy of 1lst variable)

As shown in this example, a variable assignment can make use of a previously defined variable. It can also
make use of properties declared in the same script object.

There are some obvious, and some more subtle, differences in using copy and set to create a variable—see
“Using the copy and set Commands” (page 57) for more information.

If you assign a new value to a variable that is already in use, it replaces the old value. You can assign a simple
value, an expression, or an object specifier—expressions are evaluated and object specifiers are resolved to
obtain the value to assign. To create a variable whose value is an object specifier itself, rather than the value
of the object specified, use the a reference to (page 237) operator.

The next two sections describe how you can explicitly define a Local or a globa'l variable. These variable
types differ primarily in their scope. Scope, which refers to where a variable is accessible within a script, is
described in detail in “Scope of Variables and Properties” (page 60).

Local Variables

You can declare explicit Local variables using the following syntax:

local variableName [, variableName]...

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

55

Variables and Properties
Declaring Variables

variableName
An identifier.

The following are examples of valid Local variable declarations:

local windowCount —- defines one variable

local agentName, agentNumber, agentHireDate —-- defines three variables

You cannot assign an initial value to a Local variable in its declaration, nor can you declare a class for the
variable. Instead, you use the copy (page 153) or set (page 197) command to initialize a variable and set its
class. For example:

set windowCount to @ — initialize to zero; an integer
set agentName to "James Smith" —- assign agent name; a text string
set agentNumber to getAgentNumber(agentName) —— call handler; an integer

copy current date to agentHireDate —— call current date command; a date

Global Variables

The syntax for global variables is nearly identical to that for Local variables:

global variableName [, variableName]...

variableName
An identifier.

The following are examples of valid global variable declarations:

global gAgentCount
global gStatementDate, gNextAgentNumber

As with Local variables, you use the copy (page 153) or set (page 197) command to initialize g Llobal variables
and set their class types. For example:

set gAgentCount to getCurrentAgentCount() —— call handler to get count
set gStatementDate to current date —— get date from current date command

set gNextAgentNumber to getNextAvailNumber() —-- call handler to get number

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

56

Variables and Properties
Declaring Variables

Using the copy and set Commands

As its name implies, when you use the copy (page 153) command to create a variable, it always creates a separate
copy (though note that a copy of an object specifier still specifies the same object). However, when you use
the set (page 197) command to create a variable, the new variable always refers to the original object or value.
You have essentially created another name for the same object.

When more than one variable refers to a changeable (or mutable) object, a change to the object is observable
through any of the variables. The types of AppleScript objects that are mutable are date (page 106), list (page
112), record (page 118), and script (page 121) objects.

For objects that cannot be modified (immutable objects), variables created with the set command may seem
like copies—there’s no way to change the object the variables point to, so they seem independent. This is
demonstrated in the example in the next section that creates the variables myName and yourName.

Declaring Variables with the set Command

You can use the set command to set a variable to any type of object. If the variable doesn't exist, it is created;
if it does exist, its current value is replaced:

set numClowns to 5 ——result: 5
set myList to { 1, 2, "four" } ——result: {1, 2, "four"}
tell application "TextEdit"
set wordl to word 1 of front document —-result: some word

end tell

The following example uses a mutable object. It creates two variables that refer to the same list, then modifies
the list through one of the variables:

set myList to { 1, 2, 3}
set yourList to myList

set item 1 of myList to 4

After executing these statements, the statements item 1 of myListand item 1 of yourList both yield
4, because both variables refer to the same list.

Now suppose you're working with an immutable object, such as a text object:

set myName to '"Sheila"

set yourName to myName

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

57

Variables and Properties
Declaring Variables

Both variables refer to the same text object, but text objects are not mutable, so there is no way to change
the the value myName such that it affects the value of yourName. (If you assign new text to one of the variables,
you are just creating a new, separate text object.)

The set command can assign several variables at once using a pattern, which may be a list or record: a list or
record of variables on one side, and a list or record of values on the other. Values are matched to variables
based on their position for a list, or based on their keys for a record. Not having enough values is an error; if
there are too many values, the extra ones are ignored. The order in which the values are evaluated and the
variables are assigned is unspecified, but all values are evaluated before any assignments are made.

The Examples section of the set (page 197) command shows some simple pattern assignments. Here is an
example with more complex patterns:

set x to {8, 94133, {firstName:"John", lastName:"Chapman"}}
set {p, q, r} to x
(* now p, g, and r have these values:
p=28
94133

q

r = {firstName:"John", lastName:'"Chapman"} =)

set {p, q, {lastName:r}} to x
8
94133

(* now p, g, and r have these values: p

q

r

"Chapman" x)

In the final assignment statement above, { lastName: r} is a record that hasn't been used before in the script,
and contains an item with label TastName and value r (a previously defined variable). The variable x has
previously been set to have a record that has an item with label TastName and value ""Chapman"'. During the
assignment, the value of the item labeled lastName in the new record is set to the value of the item labeled
lastName in x—hence it now has the value "Chapman".

As this example demonstrates, the properties of a record need not be given in the same order and need not
all be used when you set a pattern to a pattern, as long as the patterns match. For details, see the set (page
197) command.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

58

Variables and Properties
Declaring Variables

Note: Using patterns with the set command is similar to using patterned parameters with handlers,
which is described in “Handlers with Patterned Positional Parameters” (page 87).

Declaring Variables with the copy Command

You can use the copy command to set a variable to any type of object. If the variable doesn’t exist, it is created;
if it does exist, its current value is replaced. The copy command creates a new copy that is independent of the
original—a subsequent change does not change the original value (though note that a copy of an object
specifier still specifies the same object).

To copy within an application, you should use the application’s duplicate command, if it has one. To copy
between applications, you can use the get (page 164) command to obtain information from one application
and the set (page 197) command to set it in another.

The copy command creates a deep copy—that is, if you copy a nested data structure, such as a list that contains
another list, the entire structure is copied, as shown in the following example. This example creates a record
(alpha), then alist (beta), then a list that contains the first record and list (gamma), then finally a copy of gamma
(delta). It then changes a property in the original record, a Lpha. The result shows that the property is changed
wherever alpha appears, except in the copy, delta:

set alpha to {propertyl:10, property2:20}
set beta to {1, 2, "Hello"}

set gamma to {alpha, beta, "Goodbye"}
copy gamma to delta

set propertyl of alpha to 42

{alpha, beta, gamma, delta} —-- List variables to show contents

(xresult: {{propertyl:42, property2:20}, {1, 2, "Hello"}, {{propertyl:42,
property2:20}, {1, 2, "Hello"}, "Goodbye"}, {{propertyl:10, property2:20}, {1, 2,
"Hello"}, "Goodbye"}} x*)

If you make a copy of a reference object, it refers to the same object as the original (because both contain
the same object specifier):

set windowRef to a reference to window 1 of application "Finder"
name of windowRef —-result: "Script testing folder"
copy windowRef to currentWindowRef —-result: a new object specifier

name of currentWindowRef —-result: "Script testing folder"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

59

Variables and Properties
Scope of Variables and Properties

Scope of Variables and Properties

The declaration of a variable or property identifier is the first valid occurrence of the identifierina script
object. The form and location of the declaration determine how AppleScript treats the identifierinthat script
object.

The scope is the range over which AppleScript recognizes a declared identifier within a script object. The
scope of a variable depends on where you declare it and whether you declare it as global or local. The
scope of a property extends to the entire script object in which it is declared. After declaring a property, you
can reuse the same identifier as a separate variable only if you first declare it as a Local variable.

Lifetime refers to the period of time over which a variable or property is in existence. Only the values of
properties and global variables can persist after a script is run.

In the discussions that follow, declarations and statements in a script object that occur outside of any handlers
or nested script objects are identified as outside.
The following examples show the four basic forms for declaring variables and properties in AppleScript:

* property x: 3

The scope of a property definition is the script object in which it is declared, including any handlers or
nested script objects. A property definition specifies an initial value. You cannot declare a property in
a handler.

The value set by a property definition is not reset each time the script is run; instead, it persists until the
script is recompiled.

e global x

The scope of a global variable can be limited to specific handlers or contained script objects or it can
extend throughout a top-level script object. A global declaration doesn't set an initial value—it must
be initialized by a copy (page 153) or set (page 197) command before a script can access its value.

The value of a global variable is not reset each time a script is run, unless its initialization statement is
executed.

e local x

The scope of a Local variable can be limited to specific handlers or contained script objects or it can
extend throughout a top-level script object. A Tocal declaration doesn’t set an initial value—it must
be initialized by a copy or set command before a script can access its value.

The value of a Local variable is reset each time the handler is run (either the run handler for the script,
or the specific handler in which the variable is declared).

e set x to 3

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

60

Variables and Properties
Scope of Variables and Properties

In the absence of a global variable declaration, the scope of a variable declared with the copy or set
command is normally restricted to the run handler for the script, making it implicitly local to that run
handler. However, a handler or nested script object can declare the same variable with a global declaration
to gain access to it.

The value of a variable declared with the copy or set command is reset each time a script is run.

If you want to use the same identifier in several different places in a script, you should either declare it as a
property or as a g Llobal variable.

It is often convenient to limit the scope of a particular identifier to a single handler or nested script object,
which you can do by defining it as a Local variable in the handler or script object. Outside, the identifier
has no value associated with it and can be reused elsewhere in the script. When used this way, a Llocal variable
is said to shadow (or block access to) a global variable or property with the same name, making the global
version inaccessible in the scope of the handler or script object where the local variable is declared.

Note: If you save a script as a script application, then run the application on read-only media, the
value of a modified property or global variable is not saved.

The following sections provide additional information about scope:
* “Scope of Properties and Variables Declared in a Script Object” (page 61)

® “Scope of Variables Declared in a Handler” (page 65)

Scope of Properties and Variables Declared in a Script Object

Table 3-1 shows the scope and lifetime for variables and properties that are declared at the top level in a
script object (outside any handlers or nested script objects).

Table 3-1 Scope of property and variable declarations at the top level in a script object
Declaration type Scope (visibility) Lifetime
property x: 3 Everywhere in script Reset when script is recompiled
global x Everywhere in script Reset when reinitialized in script or when script is
recompiled
local x Within run handler only Reset when script is run
set x to 3 Within run handler only Reset when script is run

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

61

Variables and Properties
Scope of Variables and Properties

The scope of a property in a script object extends to any subsequent statements anywhere in the script.
Consider the following example:

property currentCount : 0

increment ()

on increment()
set currentCount to currentCount + 1
display dialog "Count is now " & currentCount & "."

end increment

When it encounters the identifier currentCount anywhere in this script, AppleScript associates it with the
currentCount property.

The value of a property persists after the script in which the property is defined has been run. Thus, the value
of currentCount is 0 the first time this script is run, 1 the next time it is run, and so on. The property’s current
value is saved with the script object and is not reset to 0 until the script is recompiled—that is, modified
and then run again, saved, or checked for syntax.

The value of a global variable also persists after the script in which it is defined has been run. However,
depending on how it is initialized, a global variable may be reset each time the script is run again. The next
example shows how to initialize a global variable so that it is initialized only the first time a script is run, and
thus produces the same result as using a property in the previous example:

global currentCount

increment ()

on increment()
try
set currentCount to currentCount + 1
on error
set currentCount to 1
end try
display dialog "Count is now " & currentCount & "."

end increment

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

62

Variables and Properties
Scope of Variables and Properties

The first time the script is run, the statement set currentCount to currentCount + 1 generatesan
error because the global variable currentCount has not been initialized. When the error occurs, the on
error block initializes currentCount. When the script is run again, the variable has already been initialized,
so the error branch is not executed, and the variable keeps its previous value. Persistence is accomplished, but
not as simply as in the previous example.

If you don't want the value associated with an identifier to persist after a script is run but you want to use the
same identifier throughout a script, declare a global variable and use the set command to set its value each
time the script is run:

global currentCount
set currentCount to @
on increment()
set currentCount to currentCount + 1

end increment

increment() —-result: 1

increment() —-result: 2

Each timethe on increment handler is called within the script, the global variable currentCount increases
by 1. However, when you run the entire script again, currentCount is reset to 0.

In the absence of a global variable declaration, the scope of a variable declaration using the set command
is normally restricted to the run handler for the script. For example, this script declares two separate
currentCount variables:

set currentCount to 10
on increment()
set currentCount to 5

end increment

increment() —-result: 5

currentCount —-result: 10

The scope of the first currentCount variable’s declaration is limited to the run handler for the script. Because
this script has no explicit run handler, outside statements are part of its implicit run handler, as described in
“run Handlers” (page 92). The scope of the second currentCount declaration, within the on increment
handler, is limited to that handler. AppleScript keeps track of each variable independently.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

63

Variables and Properties
Scope of Variables and Properties

To associate a variable in a handler with the same variable declared with the set command outside the handler,
you can use a global declaration in the handler, as shown in the next example. (This approach also works to
associate a variable in a nested script object.)

set currentCount to @
on increment()
global currentCount
set currentCount to currentCount + 1

end increment

increment() ——result: 1

currentCount —-result: 1

To restrict the context of a variable to a script’s run handler regardless of subsequent global declarations,
you must declare it explicitly as a Local variable, as shown in this example:

local currentCount
set currentCount to 10
on increment()
global currentCount
set currentCount to currentCount + 2

end increment

increment() ——error: "The variable currentCount is not defined"

Because the currentCount variable in this example is declared as local to the script, and hence to its implicit
run handler, any subsequent attempt to declare the same variable as global results in an error.

If you declare an outside variable with the set command and then declare the same identifier as a property,
the declaration with the set command overrides the property definition. For example, the following script
returns 10, not 5. This occurs because AppleScript evaluates property definitions before it evaluates set
command declarations:

set numClowns to 10 —— evaluated after property definition
property numClowns: 5 —— evaluated first

numClowns ——result: 10

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

64

Variables and Properties
Scope of Variables and Properties

The next example, shows how to use a global variable declaration in a script object to associate a global
variable with an outside property:

property currentCount : @
script Paula
property currentCount : 20
script Joe
global currentCount
on increment()
set currentCount to currentCount + 1
return currentCount
end increment
end script
tell Joe to increment()
end script
run Paula ——result: 1
run Paula ——result: 2
currentCount —-result: 2

currentCount of Paula ——result: 20

This script declares two separate currentCount properties: one outside any handlers (and script objects)
in the main script and one in the script object Paula but outside of any handlers or script objects within
Paula. Because the script Joe declares the global variable currentCount, AppleScript looks for
currentCount at the top level of the script, thus treating Joe’s currentCount and currentCount at the
top level of the script as the same variable.

Scope of Variables Declared in a Handler

A handler can't declare a property, although it can refer to a property that is declared outside any handler in
the script object. (A handler can contain script objects, but it can't contain another handler, except in a
contained script object.)

Table 3-2 (page 66) summarizes the scope of variables declared in a handler. Examples of each form of
declaration follow.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

65

Variables and Properties
Scope of Variables and Properties

Table 3-2 Scope of variable declarations within a handler

Declaration type Scope (visibility) Lifetime

global x Within handler only Reset when script is recompiled; if initialized in handler,
then reset when handler is run

local x Within handler only Reset when handler is run

set x to 3 Within handler only Reset when handler is run

The scope of a global variable declared in a handler is limited to that handler, although AppleScript looks
beyond the handler when it tries to locate an earlier occurrence of the same variable. Here's an example:

set currentCount to 10
on increment()
global currentCount
set currentCount to currentCount + 2

end increment

increment() —-result: 12

currentCount —-result: 12

When AppleScript encounters the currentCount variable within the on increment handler, it doesn’t
restrict its search for a previous occurrence to that handler but keeps looking until it finds the declaration
outside any handler. However, the use of currentCount in any subsequent handler in the script is local to
that handler unless the handler also explicitly declares currentCount as a global variable.

The scope of a Local variable declaration in a handler is limited to that handler, even if the same identifier
has been declared as a property outside the handler:

property currentCount : 10
on increment()

local currentCount

set currentCount to 5

end increment

increment() ——result: 5

currentCount —-result: 10

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

66

Variables and Properties
Scope of Variables and Properties

The scope of a variable declaration using the set command in a handler is limited to that handler:

script Henry

set currentCount to 10 —-- implicit local variable in script object

on increment()

set currentCount to 5-—- implicit local variable in handler
end increment
return currentCount

end script

tell Henry to increment() —-result: 5

run Henry ——result: 10

The scope of the first declaration of the first currentCount variable in the script object Henry is limited
to the run handler for the script object (in this case, an implicit run handler, consisting of the last two
statements in the script). The scope of the second currentCount declaration, within the on increment
handler, is limited to that handler. The two instances of currentCount are independent variables.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

67

Script Objects

This chapter describes the script object, which is used to implement all AppleScript scripts. Before reading
this chapter, you should be familiar with the information in “AppleScript and Objects” (page 27).

A script object is a user-defined object that can combine data (in the form of properties) and actions (in the
form of handlers and additional script objects). Script objects support inheritance, allowing you to define a
hierarchy of objects that share properties and handlers. You can also extend or modify the behavior of a handler
in one script object when calling it from another script object.

The top-level script (page 121) object is the one that implements the overall script you are working on. Any
script object can contain nested script objects, each of which is defined just like a top-level script object,
except that a nested script object is bracketed with statements that mark its beginning and end.

This chapter describes script objects in the following sections:

e “Defining Script Objects” (page 68) shows the syntax for defining script objects and includes a simple
example .

* “Initializing Script Objects” (page 70) describes how AppleScript creates a script object with the properties
and handlers you have defined.

e “Sending Commands to Script Objects” (page 71) describes how you use tell statements to send
commands to script objects.

e “Script Libraries” (page 72) describes script libraries and how to use them from other scripts.

* “Inheritance in Script Objects” (page 75) describes inheritance works and how you can use it to share
functionality in the script objects you define.

Defining Script Objects

Each script object definition (except for the top-level script object) begins with the keyword script,
followed by a variable name, and ends with the keyword end (or end script). The statements in between
can be any combination of property definitions, handler definitions, nested script object definitions, and
other AppleScript statements.

The syntax of a script object definition is as follows:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

68

Script Objects
Defining Script Objects

script variableName
[(property|prop) parent : parentSpecifier]
[(property | prop) propertylLabel : initialValue]...
[handlerDefinition]...
[statement]...

end[script]

variableName
A variable identifier for the script. You can refer to a script object by this name elsewhere in a script.

parentSpecifier
Specifies the parent of the script object, typically another script object.

For more information, see “Inheritance in Script Objects” (page 75).

propertylLabel
An identifier, unique within the script object, that specifies a characteristic of the object; equivalent
to an instance variable.

initialValue
The value that is assigned to the property each time the script object is initialized. script objects are
initialized when compiled. initialValue is required in property definitions.

handlerDefinition
A handler foracommand the script object can respond to; equivalent to a method. For more information,
see “About Handlers” (page 83) and “Handler Reference” (page 275).

statement
Any AppleScript statement. Statements other than handler and property definitions are treated as if they
were part of an implicit handler definition for the run command; they are executed when a script
object receives the run command.

Here is a simple script object definition:

script John

property HowManyTimes : @

to sayHello to someone
set HowManyTimes to HowManyTimes + 1

return "Hello " & someone

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

69

Script Objects
Initializing Script Objects

end sayHello

end script

It defines a script object that can handle the sayHello command. It assigns the script object to the
variable John. The definition includes a handler for the sayHe 11o command. It also includes a property, called
HowManyTimes, that indicates how many times the sayHe1llo command has been called.

A handler within a script object definition follows the same syntax rules as any other handler.

You can use a tell statement to send commands to a script object. For example, the following statement
sends the sayHello command the script object defined above.

tell John to sayHello to "Herb" —-result: "Hello Herb"

You can manipulate the properties of script objects by using the get command to get the value of a property
and the set or copy command to change the value. The value of a property is persistent—it gets reset every
time you compile the script, but not when you run it.

Initializing Script Objects

When you define a script object, it can contain properties, handlers, and nested script object definitions.
When you execute the script containing it, AppleScript creates a script object with the defined properties,

handlers, and nested script objects. The process of creating an instance of a script object from its definition
is called initialization. A script object must be initialized before it can respond to commands.

A top-level script object is initialized each time the script’s run handler is executed. Similarly, if you define
a script within a handler, AppleScript initializes a script object each time the handler is called. The parameter
variables in the handler definition become local variables of the script object.

For example, the makePoint handler in the following script contains a script object definition forthe script
object thePoint:

on makePoint(x, y)
script thePoint
property xCoordinate:x

property yCoordinate:y

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

70

Script Objects
Sending Commands to Script Objects

end script
return thePoint

end makePoint

set myPoint to makePoint(10,20)
get xCoordinate of myPoint --result: 10

get yCoordinate of myPoint --result: 20

AppleScript initializes the script object thePoint when it executes the makePoint command. After the
calltomakePoint, the variable myPoint refers to this script object. The parameter variables in the makePoint
handler, in this case, x and y, become local variables of the script object. The initial value of x is 10, and the
initial value of y is 20, because those are the parameters passed to the makePoint handler that initialized the
script object.

If you added the following line to the end of the previous script and ran it, the variable myOtherPoint would
refer to a second instance of the script object thePoint, with different property values:

set myOtherPoint to makePoint(30,50)

The makePoint script is a kind of constructor function that creates script objects representing points.

Sending Commands to Script Objects

You can use te 11 statements to send commands to script objects. For example, the following te 11 statement
sends two sayHe1lo commands to the script object John (defined below):

tell John
sayHello to "Herb"
sayHello to "Grace"

end tell

Fora script object to respond to a command within a tel1 statement, either the script object orits parent
object must have a handler for the command. For more information about parent objects, see “Inheritance in
Script Objects” (page 75).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

71

Script Objects
Script Libraries

A script object definition may include an implicit run handler, consisting of all executable statements that
are outside of any handler or nested script object, or it may include an explicit run handler that begins with
on run, but it may not contain both—such a script will not compile. If a script has no run handler (for example,
a script that serves as a library of handlers, as described in “Saving and Loading Libraries of Handlers” (page
7)), executing the script does nothing. However, sending it an explicit run command causes an error. For
more information, see “run Handlers” (page 92).

The display dialog command in the following script object definition is the only executable statement
at the top level, so it constitutes the script object’s implicit run handler and is executed when the script
sends a run command to script object John, with the statement tell John to run.

script John
property HowManyTimes : @
to sayHello to someone
set HowManyTimes to HowManyTimes + 1
return "Hello " & someone
end sayHello
display dialog "John received the run command"

end script

tell John to run

You can also use the possessive to send a command to a script object. For example, either of the following
two forms send the sayHe 11lo command to script John (the first version compiles into the second):

John's sayHello to "Jake" —-result: "Hello Jake"

sayHello of John to "Jake" —--result: "Hello Jake"

Script Libraries

A top-level script object saved in a Script Libraries folder becomes a script library usable by other scripts.
Libraries let you share and reuse handlers, reorganize large scripts into a set of smaller libraries that are easier
to manage, and build richer, higher-level functionality out of simpler libraries.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

72

Script Objects
Script Libraries

Note: Libraries are supported in OS X Mavericks v10.9 (AppleScript 2.3) and later. To share properties
and handlers between scripts in prior OS versions, use the load script (page 172) command as
described in “Libraries using Load Script” (page 308).

Creating a Library

The basic requirement for a script to be a script library is its location: it must be a script document in a “Script

Libraries” folder in one of the following Library folders. When searching for a library, the locations are searched

in the order listed, and the first matching script is used:

1.

If the script that references the library is a bundle, the script’s bundle Resources directory. This means that
scripts may be packaged and distributed with the libraries they use.

If the application running the script is a bundle, the application’s bundle Resources directory. This means
that script applications (“applets” and “droplets”) may be packaged and distributed with the libraries they
use. It also enables applications that run scripts to provide libraries for use by those scripts.

The Library folder in the user’s home directory, ~/Library. This is the location to install libraries for use
by a single user, and is the recommended location during library development.

The computer Library folder, /Library. Libraries located here are available to all users of the computer.

The network Library folder, /Network/Library. Libraries located here are available to multiple computers
on a network.

The system Library folder, /System/Library. These are libraries provided by OS X.

Script libraries also have name, id, and version properties. It is recommended that you define all three,

especially for libraries you plan to distribute publicly: doing so allows clients to unambiguously identify particular
versions of libraries that have the functionality they need. These properties may be defined eitheras property

definitions within the script itself, or, for script bundles, using the Bundle Contents drawer in Script Editor. For

details, see the script (page 121) class reference.

A script library may be a single-file (scpt) or bundle format (scptd). If a library is a bundle, it may define its own

terminology and may use bridged Objective-C frameworks.

Defining Scripting Terminology

Libraries may define scripting terminology, including commands, properties and enumerated values, by

supplying a Scripting Definition (sdef) file in their bundle. Like applications, this terminology is available to

client scripts when they target the library with tell or use, and to the library script itself.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

73

Script Objects
Script Libraries

To define terminology, create an sdef file as described in the Cocoa Scripting Guide under “Preparing a Scripting
Definition File”. Then, copy the file to the bundle’s Resources directory and set the Info.plist key
0SAScriptingDefinition to the base name of the sdef file (that is, the file name without the “.sdef"”
extension). Script Editor’s Bundle Contents drawer can do this for you: drag the file into the “Resources” list to
copy the file into the bundle, and enter the base name of the sdef file in the “Scripting Definition” field.

Using Objective-C Frameworks

Libraries may use system frameworks by referencing Objective-C classes and methods using the
AppleScript/Objective-C bridge, AppleScriptObjC. To enable the bridge, you must set the Info.plist key
0SAAppleScriptObjCEnabled value to true. Script Editor’s Bundle Contents drawer includes a checkbox
“AppleScript/Objective-C Library” to set this value. The script library must also explicitly list the frameworks it
will use using a use statement. For more details, see use (framework) (page 269).

Using a Library

A script library defines a script object, which a client script may then reference and then send commands to,
as described in “Sending Commands to Script Objects” (page 71). Libraries are identified by name:

script "My Library"

AppleScript will search the various Script Library folders, as described above in “Creating a Library” (page $@),
and create an instance of the library script. Unlike the result from load script, this instance is shared and
persists for at least the lifetime of the client script, so you do not have to save it in a variable, and state will be
preserved while the client script is running. For example, given this library script:

property name : "Counter"

property nextNumberProperty : 0

on nextNumber()
set my nextNumberProperty to my nextNumberProperty + 1
return my nextNumberProperty

end nextNumber

This client script, despite referencing the library in full both times, will log “1” and then “2":

tell script "Counter" to log its nextNumber() -- logs "1"

tell script "Counter" to log its nextNumber() -- logs "2"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

74

Script Objects
Inheritance in Script Objects

Note: Library script instances are unique to, and persistent for the lifetime of, the AppleScript
interpreter that loads them. Script Editor, Script Menu, and Folder Actions all run their scripts using
a separate interpreter for each script; applets and AppleScriptObjC applications use a single interpreter
for the entire application; and other applications may do either. If you are designing a library, try to
not rely on persistent state in the library script itself, since its lifetime will vary depending on how
the client script is run.

Inheritance in Script Objects

You can use the AppleScript inheritance mechanism to define related script objects in terms of one another.
This allows you to share property and handler definitions among many script objects without repeating the
shared definitions. Inheritance is described in the following sections:

* “The AppleScript Inheritance Chain” (page 75)
e “Defining Inheritance Through the parent Property” (page 76)
* “Some Examples of Inheritance” (page 76)

* “Using the continue Statement in Script Objects” (page 79)

The AppleScript Inheritance Chain

The top-level script object is the parent of all other script objects, although any script object can specify
a different parent object. The top-level script object also has a parent—AppleScript itself (the AppleScript
component). And even AppleScript has a parent—the current application. The name of that application (which
is typically Script Editor) can be obtained through the global constant current application. This hierarchy
defines the inheritance chain that AppleScript searches to find the target for a command or the definition of
a term.

Every script object has access to the properties, handlers, and script objects it defines, as well as to those
defined by its parent, and those of any other object in the inheritance chain, including AppleScript. That's why
the constants and properties described in “Global Constants in AppleScript” (page 41) are available to any
script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

75

Script Objects
Inheritance in Script Objects

Note: There is an exception to the previous claim. An explicit Local variable can shadow (or block
access to) a global variable or property with the same name, making the global version inaccessible
in the scope of the handler or script object. For related information, see “Scope of Variables and
Properties” (page 60).

Defining Inheritance Through the parent Property

When working with script (page 121) objects, inheritance is the ability of a child script object to take on
the properties and handlers of a parent object. You specify inheritance with the parent property.

The object listed in a parent property definition is called the parent object, or parent. A script object that
includes a parent property is referred to as a child script object , or child. The parent property is not required,
though if one is not specified, every script is a child of the top-level script, as described in “The AppleScript
Inheritance Chain” (page 75). A script object can have many children, but a child script object can have
only one parent. The parent object may be any object, such asa list (page 112) oran application (page 99)
object, but it is typically another script object.

The syntax for defining a parent object is

(property|prop) parent : variable

variable
An identifier for a variable that refers to the parent object.

A script object must be initialized before it can be assigned as a parent of another script object. This means
that the definition of a parent script object (or a command that calls a function that creates a parent script
object) must come before the definition of the child in the same script.

Some Examples of Inheritance

The inheritance relationship between script objects should be familiar to those who are acquainted with
C++ or other object-oriented programming languages. A child script object that inherits the handlers and
properties defined in its parent is like a C++ class that inherits methods and instance variables from its parent
class. If the child does not have its own definition of a property or handler, it uses the inherited property or
handler. If the child has its own definition of a particular property or handler, then it ignores (or overrides) the
inherited property or handler.

Listing 4-1 (page 77) shows the definitions of a parent script object called Alex and a child script object
called AlexJunior.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

76

Script Objects
Inheritance in Script Objects

Listing 4-1 A pair of script objects with a simple parent-child relationship

script Alex
on sayHello()
return "Hello, " & getName()
end sayHello
on getName()
return "Alex"
end getName

end script

script AlexJunior
property parent : Alex
on getName()
return "Alex Jr"
end getName

end script

—— Sample calls to handlers in the script objects:
tell Alex to sayHello() —-result: "Hello, Alex"
tell AlexJunior to sayHello() ——result: "Hello, Alex Jr."

tell Alex to getName() ——result: "Alex"

tell AlexJunior to getName() ——result: "Alex Jr"

Each script object defines a getName () handler to return its name. The script object Alex also defines
the sayHello() handler. Because AlexJunior declares Alex to be its parent object, it inherits the sayHe 1 lo()
handler.

Using a tel1 statement to invoke the sayHello () handler of script object Alex returns "Hello, Alex".
Invoking the same handler of script object AlexJunior returns "Hello, Alex Jr"—although the same
sayHello () handlerin Alex is executed, when that handler calls getName (), it's the getName() in
AlexJunior that is executed.

The relationship between a parent script object and its child script objects is dynamic. If the properties
of the parent change, so do the inherited properties of the children. For example, the script object JohnSon
in the following script inherits its vegetable property from script object John.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

77

Script Objects
Inheritance in Script Objects

script John
property vegetable : "Spinach"
end script
script JohnSon
property parent : John
end script
set vegetable of John to "Swiss chard"
vegetable of JohnSon

—result: "Swiss chard"

When you change the vegetable property of script object John with the set command, you also change
the vegetable property of the child script object Simple. The result of the last line of the scriptis "'Swiss
chard".

Similarly, if a child changes one of its inherited properties, the value in the parent object also changes. For
example, the script object JohnSon in the following script inherits the vegetable property from script
object John.

script John

property vegetable : "Spinach"
end script
script JohnSon

property parent : John

on changeVegetable()

set my vegetable to "Zucchini"

end changeVegetable
end script
tell JohnSon to changeVegetable()
vegetable of John

——result: "Zucchini"

When you change the vegetable property of script object JohnSon to "Zucchini" with the
changeVegetable command, the vegetable property of script object John also changes.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

78

Script Objects
Inheritance in Script Objects

The previous example demonstrates an important point about inherited properties: to refer to an inherited
property from within a child script object, you must use the reserved word my or of me to indicate that the
value to which you're referring is a property of the current script object. (You can also use the words of
parent to indicate that the value is a property of the parent script object.) If you don't, AppleScript assumes
the value is a local variable.

For example, if you refer to vegetable instead of my vegetable in the changeVegetable handler in the
previous example, the result is "Spinach". For related information, see “The it and me Keywords” (page 45).

Using the continue Statement in Script Objects

In a child script object, you can define a handler with the same name as a handler defined in its parent
object. In implementing the child handler, you have several options:

* The handler in the child script object can be independent of the one in its parent. This allows you to
call either handler, as you wish.

* The handler in the child can simply invoke the handler in its parent. This allows the child object to take
advantage of the parent’s implementation (as shown in the script objects below that contain a on
identify handler).

* The handler in the child can invoke the handler in its parent, changing the values passed to it or executing
additional statements before or after invoking the parent handler. This allows the child object to modify
or add to the behavior of its parent, but still take advantage of the parent’s implementation.

Normally, if a child script object and its parent both have handlers for the same command, the child uses
its own handler. However, the handler in a child script object can handle a command first, and then use a
continue statement to call the handler for the same command in the parent.

This handing off of control to another object is called delegation. By delegating commands to a parent script
object, a child can extend the behavior of a handler contained in the parent without having to repeat the
entire handler definition. After the parent handles the command, AppleScript continues at the place in the
child where the continue statement was executed.

The syntax for a continue statement is shown in “continue” (page 275).

The following script includes two script object definitions, Elizabeth and ChildOfElizabeth.

script Elizabeth
property HowManyTimes : @
to sayHello to someone

set HowManyTimes to HowManyTimes + 1

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

79

Script Objects
Inheritance in Script Objects

return "Hello " & someone
end sayHello

end script

script ChildOfElizabeth
property parent : Elizabeth
on sayHello to someone
if my HowManyTimes > 3 then
return "No, I'm tired of saying hello."
else
continue sayHello to someone
end if
end sayHello
end script
tell Elizabeth to sayHello to "Matt"
——result: "Hello Matt", no matter how often the tell is executed
tell ChildOfElizabeth to sayHello to "Bob"
—result: "Hello Bob", the first four times the tell is executed;

- after the fourth time: "No, I'm tired of saying hello."

In this example, the handler defined by ChildOfElizabeth for the sayHello command checks the value
of the HowManyTimes property each time the handler is run. If the value is greater than 3, Chi1dOfElizabeth
returns a message refusing to say hello. Otherwise, ChildOfElizabeth calls the sayHello handler in the
parent script object (Elizabeth), which returns the standard hello message. The word someone in the
continue statement is a parameter variable. It indicates that the parameter received with the original sayHe 1o
command will be passed to the handler in the parent script.

Note: The reserved word my in the statement if my HowManyTimes > 10 in this example is
required to indicate that HowManyTimes is a property of the script object. Without the word my,
AppleScript assumes that HowManyTimes is an undefined local variable.

A continue statement can change the parameters of a command before delegating it. For example, suppose
the following script object is defined in the same script as the preceding example. The first continue
statement changes the direct parameter of the sayHe 11o command from "Bill" to "William". It does this
by specifying the value "William" instead of the parameter variable someone.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

80

Script Objects
Inheritance in Script Objects

script AnotherChildOfElizabeth
property parent : Elizabeth
on sayHello to someone
if someone = "Bill" then
continue sayHello to "William"
else
continue sayHello to someone
end if
end sayHello

end script

tell AnotherChildOfElizabeth to sayHello to "Matt"
——result: "Hello Matt"

tell AnotherChildOfElizabeth to sayHello to "Bill"

——result: "Hello William"

If you override a parent’s handler in this manner, the reserved words me and my in the parent’s handler no
longer refer to the parent, as demonstrated in the example that follows.

script Hugh
on identify()
me
end identify
end script
script Andrea
property parent : Hugh
on identify()
continue identify()
end identify

end script

tell Hugh to identify()

——result: «script Hugh»

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

81

Script Objects
Inheritance in Script Objects

tell Andrea to identify()

——result: «script Andrea»

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

82

About Handlers

When script developers want to factor and re-use their code, they can turn to handlers. A handler is a collection
of statements that can be invoked by name. Handlers are also known as functions, subroutines, or methods.

This chapter describes how to work with handlers, in the following sections:
* “Handler Basics” (page 83)
* “Handlers in Script Applications” (page 91)

For detailed reference information, see “Handler Reference” (page 275).

Handler Basics

A handler is a collection of statements that can be invoked by name. Handlers are useful in scripts that perform
the same action in more than one place. You can package statements that perform a specific task as a handler,
give it a descriptive name, and call it from anywhere in the script. This makes the script shorter and easier to
maintain.

A script can contain one or more handlers. However, you can not nest a handler definition within another
handler (although a script object defined in a handler can contain other handlers).

The definition for a handler specifies the parameters it uses, if any. It does not specify the class for its parameters.
However, most handlers expect each parameter to be of a specific class, so it is useful to add a comment that
lists the expected class types.

When you call a handler, you must list its parameters according to how they are specified in its definition.
Handlers may have labeled, positional, or interleaved parameters, described in subsequent sections.

A handler definition can contain variable declarations and statements. It may use a return statement (described
in detail in “return” (page 276)) to return a value and exit the handler.

A call to a handler must include all the parameters specified in the handler definition. There is no way to specify
optional parameters.

The sections that follow provide additional information on working with handlers:

e “Defining a Simple Handler” (page 84)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

83

About Handlers
Handler Basics

e “Handlers with Labeled Parameters” (page 85)

e “Handlers with Positional Parameters” (page 86)

* “Handlers with Patterned Positional Parameters” (page 87)
* “Recursive Handlers” (page 89)

* “Errors in Handlers” (page 90)

* “Passing by Reference Versus Passing by Value” (page 90)

e “Calling Handlers in a tell Statement” (page 91)

Defining a Simple Handler

The following is a definition for a simple handler that takes any parameter value that can be displayed as text
(presumably one representing a date) and displays it in a dialog box. The handler name is rock; its parameter
isaround the clock, where around is a parameter label and clock is the parameter name (the is an
AppleScript filler for readability):

on rock around the clock
display dialog (clock as text)

end rock

This handler allows an English-like calling statement:

rock around the current date —— call handler to display current date

A handler can have no parameters. To indicate that a handler has no parameters, you include a pair of empty
parentheses after the handler name in both the handler definition and the handler call. For example, the
following helloWorld script has no parameters.

on helloWorld()
display dialog "Hello World"

end

helloWorld() —- Call the handler

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

84

About Handlers
Handler Basics

Handlers with Labeled Parameters

To define a handler with labeled parameters, you list the labels to use when calling the handler and the
statements to be executed when it is called. (The syntax is shown in “Handler Syntax (Labeled Parameters)” (page
277).)

Handlers with labeled parameters can also have a direct parameter. With the exception of the direct parameter,
which must directly follow the handler name, labeled parameters can appear in any order, with the labels from
the handler definition identifying the parameter values. This includes parameters listed in given, with, and
without clauses (of which there can be any number).

The findNumbers handler in the following example uses the special label given to define a parameter with
the label given rounding.

to findNumbers of numberList above minLimit given rounding:roundBoolean
set resultList to {}
repeat with i from 1 to (count items of numberList)
set x to item i of numberList
if roundBoolean then —- round the number
—— Use copy so original list isn’t modified.
copy (round x) to x
end if
if x > minLimit then
set end of resultList to x
end if
end repeat
return resultlList

end findNumbers

The next statements show how to call findNumbers by passing a predefined 1ist variable:

set myList to {2, 5, 19.75, 99, 1}

findNumbers of myList above 19 given rounding:true
——result: {20, 99}

findNumbers of myList above 19 given rounding:false

——result: {19.75, 99}

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

85

About Handlers
Handler Basics

You can also specify the value of the rounding parameter by using a with or without clause to indicate
true or false. (In fact, when you compile the previous examples, AppleScript automatically converts given
rounding:truetowith roundingandgiven rounding:falsetowithout rounding.) These examples
pass a List object directly, rather than using a 1ist variable as in the previous case:

findNumbers of {5.1, 20.1, 20.5, 33} above 20 with rounding
—result: {33}

findNumbers of {5.1, 20.1, 20.5, 33.7} above 20 without rounding
——result: {20.1, 20.5, 33.7}

Here is another handler that uses parameter labels:

to check for yourNumber from startRange thru endRange
if startRange = yourNumber and yourNumber = endRange then
display dialog "Congratulations! Your number is included."
end if

end check

The following statement calls the handler, causing it to display the "Congratulations!" message

check for 8 from 7 thru 10 —— call the handler

Handlers with Positional Parameters

The definition for a handler with positional parameters shows the order in which to list parameters when calling
the handler and the statements to be executed when the handler is called. The definition must include
parentheses, even if it doesn't include any parameters. The syntax is shown in “Handler Syntax (Positional
Parameters)” (page 281).

In the following example, the minimumVa lue routine returns the smaller of two values:

on minimumValue(x, y)
if x <y then
return x
else

return y

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

86

About Handlers
Handler Basics

end if

end minimumValue

—— To call minimumValue:

minimumValue(5, 105) —-result: 5

The first line of the minimumValue handler specifies the parameters of the handler. To call a handler with
positional parameters you list the parameters in the same order as they are specified in the handler definition.

If a handler call is part of an expression, AppleScript uses the value returned by the handler to evaluate the
expression. For example, to evaluate the following expression, AppleScript first calls minimumValue, then
evaluates the rest of the expression.

minimumValue(5, 105) + 50 ——result: 55

Handlers with Patterned Positional Parameters

You can create a handler whose positional parameters define a pattern to match when calling the handler. For
example, the following handler takes a single parameter whose pattern consists of two items in a list:

on displayPoint({x, y})
display dialog ("x =" & x & ", y =" & y)
end displayPoint

—— Calling the handler:
set testPoint to {3, 8}
displayPoint(testPoint)

A parameter pattern can be much more complex than a single list. The handler in the next example takes two

numbers and a record whose properties include a list of bounds. The handler displays a dialog box summarizing
some of the passed information.

on hello(a, b, {length:1, bounds:{x, y, w, h}, name:n})
set gqtoa+b

set response to "Hello " & n & ", you are" & 1 & -

inches tall and occupy position (" & x & ", " &y & ")."

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

87

About Handlers
Handler Basics

display dialog response

end hello

set thing to {bounds:{1, 2, 4, 5}, name:"George", length:72}
hello (2, 3, thing)
—result: A dialog displaying "Hello George, you are 72 inches tall

- and occupy position (1,2)."

The properties of a record passed to a handler with patterned parameters don't have to be given in the same
order in which they are given in the handler’s definition, as long as all the properties required to fit the pattern
are present.

The following call to minimumValue uses the value from a handler call to maximumValue as its second
parameter. The maximumValue handler (not shown) returns the larger of two passed numeric values.

minimumValue (20, maximumValue(1l, 313)) —-result: 20

Handlers with Interleaved Parameters

A handler with interleaved parameters is a special case of one with positional parameters. The definition shows
the order in which to list parameters when calling the handler and the statements to be executed when the
handler is called, but the name of the handler is broken into pieces and interleaved with the parameters, which
can make it easier to read. Handlers with interleaved parameters may be used in any script, but are especially
useful with bridged Objective-C methods, since they naturally resemble Objective-C syntax. The syntax is shown
in “Handler Syntax (Interleaved Parameters)” (page 282).

A handler with interleaved parameters may have only one parameter, as in this example:

on areaOfCircleWithRadius:radius
return radius ~ 2 * pi

end areaOfCircleWithRadius:

Or more than one, as in this example:

on areaOfRectangleWithWidth:w height:h

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

88

About Handlers
Handler Basics

return w x h

end areaOfRectangleWithWidth:height:

To call a handler with interleaved parameters, list the parameters in the same order as they are specified in
the handler definition. Despite the resemblance to labeled parameters, the parameters may not be reordered.
Also, the call must be explicitly sent to an object, even if the target object is the default, it. For example:

its foo:5 bar:105 ——this works
tell it to foo:5 bar:105 —-as does this

fo00:5 bar:105 —-syntax error.

Note: The actual name of an interleaved-parameter handler is all the name parts strung together
with underscores, and is equivalent to a handler defined using that name with positional parameters.
For example, these two handler declarations are equivalent:

on tableView:t objectValueForTableColumn:c row:r

on tableView_objectValueForTableColumn_row_(t, c, r)

Given a compiled script, AppleScript will automatically translate between the two forms depending
on whether or not the current system version supports interleaved parameters.

Recursive Handlers

A recursive handler is a handler that calls itself. For example, this recursive handler generates a factorial. (The
factorial of a number is the product of all the positive integers from 1 to that number. For example, 4 factorial
isequal to 1*2* 3 * 4, or 24. The factorial of O is 1.)

on factorial(x)
if x > 0 then
return x x factorial(x - 1)
else
return 1
end if

end factorial

—— To call factorial:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

89

About Handlers
Handler Basics

factorial(10) ——result: 3628800

In the example above, the handler factorial is called once, passing the value 10. The handler then calls
itself recursively with a value of x — 1, or 9. Each time the handler calls itself, it makes another recursive call,
until the value of x is 8. When x is equal to 0, AppleScript skips to the else clause and finishes executing all
the partially executed handlers, including the original factorial call.

When you call a recursive handler, AppleScript keeps track of the variables and pending statements in the
original (partially executed) handler until the recursive handler has completed. Because each call uses some
memory, the maximum number of pending handlers is limited by the available memory. As a result, a recursive
handler may generate an error before the recursive calls complete.

In addition, a recursive handler may not be the most efficient solution to a problem. For example, the factorial
handler shown above can be rewritten to use a repeat statement instead of a recursive call, as shown in the
example in repeat with loopVariable (from startValue to stopValue) (page 256).

Errors in Handlers

As with any AppleScript statements that may encounter an error, you can use a try statement to deal with
possible errors in a handler. A try (page 262) statement includes two collections of statements: one to be
executed in the general case, and a second to be executed only if an error occurs.

By using one or more try statements with a handler, you can combine the advantages of reuse and error
handling in one package. For a detailed example that demonstrates this approach, see “Working with
Errors” (page 301).

Passing by Reference Versus Passing by Value

Within a handler, each parameter is like a variable, providing access to passed information. AppleScript passes
all parameters by reference, which means that a passed variable is shared between the handler and the caller,
as if the handler had created a variable using the set (page 197) command. However, it is important to remember
a point raised in “Using the copy and set Commands” (page 57): only mutable objects can actually be changed.

As a result, a parameter’s class type determines whether information is effectively passed by value or by
reference:

* For mutable objects (those whose class is date (page 106), list (page 112), record (page 118), or
script (page 121)), information is passed by reference:

If a handler changes the value of a parameter of this type, the original object is changed.

* For all other class types, information is effectively passed by value:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

90

About Handlers
Handlers in Script Applications

Although AppleScript passes a reference to the original object, that object cannot be changed. If the
handler assigns a new value to a parameter of this type, the original object is unchanged.

If you want to pass by reference with a class type other than date, list, record, or script, you can pass a
reference object that refers to the object in question. Although the handler will have access only to a copy
of the reference object, the specified object will be the same. Changes to the specified object in the handler
will change the original object, although changes to the reference object itself will not.

Calling Handlers in a tell Statement

To call a handler from within a tel1 statement, you must use the reserved words of me or my to indicate that
the handler is part of the script and not a command that should be sent to the target of the tell statement.

For example, the following script calls the minimumValue handler defined in “Handlers with Positional
Parameters” (page 86) from within a tell statement. If this call did not include the words of me, it would
cause an error, because AppleScript would send the minimumValue command to TextEdit, which does not
understand that message.

tell front document of application "TextEdit"
minimumValue(12, 400) of me
set paragraph 1 to result as text

end tell

——result: The handler call is successful.

Instead of using the words of me, you could insert the word my before the handler call:

my minimumValue(12, 400)

Handlers in Script Applications

A script application is an application whose only function is to run the script associated with it. Script
applications contain handlers that allow them to respond to commands. For example, many script applications
can respond to the run command and the open command. A script application receives a run command
whenever it is launched and an open command whenever another icon is dropped on its icon in the Finder.
It can also contain other handlers to respond to commands such as quit or print.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

91

About Handlers
Handlers in Script Applications

When saving a script in Script Editor, you can create a script application by choosing either Application or
Application Bundle from the File Format options. Saving as Application results in a simple format that is
compatible with Mac OS 9. Saving as Application Bundle results in an application that uses the modern bundle
format, with its specified directory structure, which is supported back to OS X v10.3.

When creating a script application, you can also specify whether a startup screen should appear before the
application runs its script. Whatever you write in the Description pane of the script window in Script Editor is
displayed in the startup screen. You can also specify in Script Editor whether a script application should stay
open after running. The default is for the script to quit immediately after it is run.

You can run a script application from the Finder much like any other application. If it has a startup screen, the
user must click the Run button or press the Return key before the script actually runs.

Consider the following simple script

tell application "Finder"
close front window

end tell

What this script does as a script application depends on what you specify when you save it. If you don’t specify
a startup screen or tell it to stay open, it will automatically execute once, closing the front Finder window, and
then quit.

If a script application modifies the value of a property, the changed value persists across launches of the
application. For related information, see “Scope of Variables and Properties” (page 60).

For information about some common script application handlers, see the following sections:
* “run Handlers” (page 92)

* ‘“open Handlers” (page 94)

¢ “idle and quit Handlers for Stay-Open Applications” (page 94)

See “Handler Reference” (page 275) for syntax information.

run Handlers

When you run a script or launch a script application, its run handler is invoked. A script’s run handler is defined
in one of two ways:

* Asanimplicit run handler, which consists of all statements declared outside any handler or nested script
object in a script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

92

About Handlers
Handlers in Script Applications

Declarations for properties and global variables are not considered statements in this context—that is,
they are not considered to be part of an implicit run handler.

* Asan explicit run handler, which is enclosed within on run and end statements, similar to other handlers.

Having both an implicit and an explicit run handler is not allowed, and causes a syntax error during compilation.
If a script has no run handler (for example, a script that serves as a library of handlers, as described in “Saving

and Loading Libraries of Handlers” (page ?)), executing the script does nothing. However, sending it an
explicit run command causes an error.

The following script demonstrates an implicit run handler. The script consists of a statement that invokes the
sayHello handler, and the definition for the handler itself:

sayHello()

on sayHello()
display dialog "Hello"
end sayHello

The implicit run handler for this script consists of the statement sayHello(), which is the only statement
outside the handler. If you save this script as a script application and then run the application, the script receives
a run command, which causes it to execute the one statement in the implicit run handler.

You can rewrite the previous script to provide the exact same behavior with an explicit run handler:

on run
sayHello()

end run

on sayHello()
display dialog "Hello"
end sayHello

Whether a script is saved as a script application or as a compiled script, its run handler is invoked when the
script is run. You can also invoke a run handler in a script application from another script. For information
about how to do this, see “Calling a Script Application From a Script” (page 96).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

93

About Handlers
Handlers in Script Applications

open Handlers

Mac apps, including script applications, receive an open command whenever the user drops file, folder, or disk
icons on the application’s Finder icon, even if the application is already running.

If the script in a script application includes an open handler, the handler is executed when the application
receives the open command. The open handler takes a single parameter which provides a list of all the items
to be opened. Each item in the list is analias (page 98) object.

For example, the following open handler makes a list of the pathnames of all items dropped on the script
application’s icon and saves them in the frontmost TextEdit document:

on open names
set pathNamesString to "" —- Start with empty text string.
repeat with i in names
—— In this loop, you can perform operations on each dropped item.
—— For now, just get the name and append a return character.
set iPath to (i as text)
set pathNamesString to pathNamesString & iPath & return
end repeat
—— Store list in open document, to verify what was dropped.
tell application "TextEdit"
set paragraph 1 of front document to pathNamesString
end tell
return

end open

Files, folders, or disks are not moved, copied, or affected in any way by merely dropping them on a script
application. However, the script application’s handler can tell Finder to move, copy, or otherwise manipulate
the items. For examples that work with Finder items, see “Folder Actions Reference” (page 284).

You can also run an open handler by sending a script application the open command. For details, see “Calling
a Script Application From a Script” (page 96).

idle and quit Handlers for Stay-Open Applications

By default, a script application that receives a run or open command handles that single command and then
quits. In contrast, a stay-open script application (one saved as Stay Open in Script Editor) stays open after it is
launched.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

94

About Handlers
Handlers in Script Applications

A stay-open script application can be useful for several reasons:

* Stay-open script applications can receive and handle other commands in addition to run and open. This
allows you to use a script application as a script server that, when it is running, provides a collection of
handlers that can be invoked by any other script.

* Stay-open script applications can perform periodic actions, even in the background, as long as the script
application is running.

Two particular handlers that stay-open script applications often provide are an idle handler and a quit
handler.

idle Handlers

If a stay-open script application includes an idle handler, AppleScript sends the script application periodic
idle commands—by default, every 30 seconds—allowing it to perform background tasks when it is not
performing other actions.

If an idle handler returns a positive number, that number becomes the rate (in seconds) at which the handler
is called. If the handler returns a non-numeric value, the rate is not changed. You can return 0 to maintain the
default delay of 30 seconds.

For example, when saved as a stay-open application, the following script beeps every 5 seconds:

on idle
beep
return 5
end idle

The result returned from a handler is just the result of the last statement, even if it doesn't include the word
return explicitly. (See “return” (page 276) for more information.) For example, this handler gets called once
a minute, because the value of the last statement is 60:

on idle

set x to 10

beep

set x to x * 6 —-- The handler returns the result (60).
end idle

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

95

About Handlers
Calling a Script Application From a Script

quit Handlers

AppleScript sends a stay-open script application a quit command whenever the user chooses the Quit menu
command or presses Command-Q while the application is active. If the script includes a quit handler, the
statements in the handler are run before the application quits.

A quit handler can be used to set script properties, tell another application to do something, display a dialog
box, or perform almost any other task. If the handler includes a continue quit statement, the script
application’s default quit behavior is invoked and it quits. If the quit handler returns before it encounters a
continue quit statement, the application doesn't quit.

Note: The continue statement passes control back to the application’s default quit handler. For
more information, see “continue” (page 275).

For example, this handler checks with the user before allowing the application to quit:

on quit
display dialog "Really quit?" -
buttons {"No", "Quit"} default button "Quit"
if the button returned of the result is "Quit" then
continue quit
end if
—— Without the continue statement, the application doesn't quit.

end quit

Warning: If AppleScript doesn’t encounter a continue quit statement while executing an on
quit handler, it may seem to be impossible to quit the application. For example, if the handler shown
above gets an error before the continue quit statement, the application won't quit. If necessary,

you can use Force Quit (Command-Option-Esc) to halt the application.

Calling a Script Application From a Script

A script can send commands to a script application just as it can to other applications. To launch a non-stay-open
application and run its script, use a launch (page 170) command followed by a run command, like this:

launch application "NonStayOpen"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

96

About Handlers
Calling a Script Application From a Script

run application "NonStayOpen"

The launch command launches the script application without sending it an implicit run command. When
the run command is sent to the script application, it processes the command, sends back a reply if necessary,
and quits.

Similarly, to launch a non-stay-open application and run its stringTest handler (which takes a text object
as a parameter), use a Launch command followed by a stringTest command, like this:

tell application "NonStayOpen"
launch
stringTest("Some example text.")

end tell

For information on how to create script applications, see “Handlers in Script Applications” (page 91).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

97

Class Reference

A class is a category for objects that share characteristics. AppleScript defines classes for common objects used
in AppleScript scripts, such as aliases, Boolean values, integers, text, and so on.

Each object in a script is an instance of a specific class and has the same properties (including the class
property), can contain the same kinds of elements, and supports the same kinds of operations and coercions
as other objects of that type. Objects that are instances of AppleScript types can be used anywhere in a
script—they don't need to be within a tell block that specifies an application.

Scriptable applications also define their own classes, such as windows and documents, which commonly
contain properties and elements based on many of the basic AppleScript classes described in this chapter.
Scripts obtain these objects in the context of the applications that define them. For more information on the
class types applications typically support, see “Standard Classes” in Technical Note TN2106, Scripting Interface
Guidelines.

alias

A persistent reference to an existing file, folder, or volume in the file system.

For related information, see file (page 110), POSIX file (page 116), and “Aliases and Files” (page 47).

Properties of alias objects
class

Access: read only
Class: class (page 104)
The class identifier for the object. The value is always alias.

POSIX path

Access: read only
Class: text (page 123)
The POSIX-style path to the object.

Coercions Supported

AppleScript supports coercion of an alias object to a text (page 123) object or single-item list (page 112).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

98

http://developer.apple.com/technotes/tn2002/tn2106.html
http://developer.apple.com/technotes/tn2002/tn2106.html

Class Reference

Examples

set zApp to choose application as alias —— (then choose Finder.app)
——result: alias "Leopard:System:Library:CoreServices:Finder.app:"

class of zApp ——result: alias

zApp as text —-result: "Leopard:System:Library:CoreServices:Finder.app:"

zApp as list —--result: {alias "Leopard:System:Library:CoreServices:Finder.app:"}

You can use the POSIX path property to obtain a POSIX-style path to the item referred to by an alias:

POSIX path of zApp ——result: "/System/Library/CoreServices/Finder.app/"

Discussion
You can only create an alias to a file or folder that already exists.

Special Considerations
AppleScript 2.0 attempts to resolve aliases only when you run a script. However, in earlier versions, AppleScript
attempts to resolve aliases at compile time.

application
An application on a local machine or an available server.

An application object in a script has all of the properties described here, which are handled by AppleScript. It
may have additional properties, depending on the specific application it refers to.

Properties of application objects
class

Access: read only
Class: class (page 104)
The class identifier for the object. The value is always application.

frontmost

Access: read only
Class: boolean (page 102)
Is the application frontmost?

Starting in AppleScript 2.0, accessing an application’s f rontmost property returns a Boolean value without launching
the application or sending it an event.

The value of frontmost for background-only applications, Ul element applications such as System Events, and
applications that are not running is always false.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

99

Class Reference

id
Access: read only

Class: text (page 123)
The application’s bundle identifier (the default) or its four-character signature code. (New in AppleScript 2.0.)

For example, the bundle identifier for the TextEdit application is "'com.apple. TextEdit". Its four-character
signature codeis ' ttxt".If you ask for an application object’s 1d property, you will get the bundle identifier version,
unless the application does not have a bundle identifier and does have a signature code.

name

Access: read only
Class: text (page 123)
The application’s name.

Starting in AppleScript 2.0, accessing an application’s name property returns the application name as text without
launching the application or sending it an event.

running

Access: read only
Class: boolean (page 102)
Is the application running? (New in AppleScript 2.0.)

Accessing an application’s running property returns a Boolean value without launching the application or sending
it an event.

You can also ask the System Events utility application whether an application is running. While it requires more lines
in your script to do so, that option is available in earlier versions of the Mac OS.

version

Access: read only
Class: text (page 123)
The application’s version.

Starting in AppleScript 2.0, accessing this property returns the application version as text without launching the
application or sending it an event.

Coercions Supported

AppleScript supports coercion of an application object to a single-item list (page 112).

Examples
You can determine whether an application on the current computer is running without launching it (this won't
work if your target is on a remote computer):

tell application "iTunes" —— doesn't automatically launch app
if it is running then

pause

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

100

Class Reference

end if

end tell

You can also use this format:

if application "iTunes" is running

tell application "iTunes" to pause

end if

The following statements specify the TextEdit application by, respectively, its signature, its bundle id, and by

a POSIX path to a specific version of TextEdit:

application id "ttxt"
application id "com.apple.TextEdit"
application "/Applications/TextEdit.app"

You can target a remote application with a tell statement. For details, see “Remote Applications” (page

50).

Special Considerations
Starting in OS X v10.5, there are several changes in application behavior:

Applications launch hidden.

AppleScript has always launched applications if it needed to in order to send them a command. However,
they would always launch visibly, which could be visually disruptive. AppleScript now launches applications
hidden by default. They will not be visible unless the script explicitly says otherwise using activate.

Applications are located lazily.

When running a script, AppleScript will not attempt to locate an application until it needs to in order to
send it a command. This means that a compiled script or script application may contain references to
applications that do not exist on the user’s system, but AppleScript will not ask where the missing
applications are until it encounters a relevant te 11 block. Previous versions of AppleScript would attempt
to locate every referenced application before running the script.

When opening a script for editing, AppleScript will attempt to locate all the referenced applications in the
entire script, which may mean asking where one is. Pressing the Cancel button only cancels the search for
that application; the script will continue opening normally, though custom terminology for that application
will display as raw codes. In older versions, pressing Cancel would cancel opening the script.

Applications are located and re-located dynamically.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

101

Class Reference

Object specifiers that refer to applications, including those in te 11 blocks, are evaluated every time a
script runs. This alleviates problems with scripts getting “stuck” to a particular copy of an application.

In prior versions of AppleScript, use of the new built-in application properties will fall back to sending an event
to the application, but the application may not handle these properties in the same way, or handle them at
all. (Most applications will handle name, version, and frontmost; id and running are uncommon.) The
other new features described above require AppleScript 2.0.

boolean
A logical truth value.
A boolean object evaluates to one of the AppleScript constants t rue or false. A Boolean expression contains

one or more boolean objects and evaluates to true or false.

Properties of boolean objects
class

Access: read only
Class: class (page 104)
The class identifier for the object. The value is always boolean.

Operators
The operators that take boolean objects as operands are and, or, not, &, =, and #, as well as their text
equivalents: is equal to, is not equal to, equals, and soon.

The = operator returns true if both operands evaluate to the same value (either true or false); the # operator
returns true if the operands evaluate to different values.

The binary operators and and or take boolean objects as operands and return Boolean values. An and
operation, suchas (2 > 1) and (4 > 3), has the value true if both its operands are true, and false
otherwise. An or operation, such as (theString = "Yes") or (today = "Tuesday"), has the value
true if either of its operands is true.

The unary not operator changes a true value to false ora false value to true.

The concatenation operator (&) creates a list containing the two boolean values on either side of it; for example:

true & false ——result: {true, false}

For additional information on these operators, see “Operators Reference” (page 226).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

102

Class Reference

Coercions Supported

AppleScript supports coercion of a boo lean object to a single-item list (page 112), a text (page 123) object,
oran integer (page 110).

Examples
The following are simple Boolean expressions:

true
false

paragraphCount > 2

AppleScript supplies the Boolean constants true and false to serve as the result of evaluating a Boolean
operation. But scripts rarely need to use these literals explicitly because a Boolean expression itself evaluates
to a Boolean value. For example, consider the following two script snippets:

if companyName is equal to "Acme Baking" then
return true

else
return false

end if

return companyName is equal to "Acme Baking"

The second, simpler version, just returns the value of the Boolean comparison companyName is equal to
"Acme Baking", so it doesn’t need to use a Boolean constant.

Discussion
When you pass a Boolean value as a parameter to a command, the form may change when you compile the
command. For example, the following line

choose folder showing package contents true

is converted to this when compiled by AppleScript:

choose folder with showing package contents

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

103

Class Reference

It is standard for AppleScript to compile parameter expressions from the Boolean form (such as showing
package contents trueorinvisibles false)intothewithform (with showing package contents
orwithout invisibles, respectively).

class

Specifies the class of an object or value.
All classes have a class property that specifies the class type. The value of the class property is an identifier.
Properties of class objects

class

Access: read only
Class: class (page 104)
The class identifier for the object. The value of this property is always c lass.

Operators

The operators that take class identifier values as operands are &, =, #, and as.

The coercion operator as takes an object of one class type and coerces it to an object of a type specified by a
class identifier. For example, the following statement coerces a text object into a corresponding real:

"1.5" as real ——result: 1.5

Coercions Supported

AppleScript supports coercion of a class identifier to a single-item list (page 112) or a text (page 123) object.

Examples
Asking for the class of a type such as integer results in a value of class:

class of text ——result: class

class of integer ——result: class

Here is the class of a boolean literal:

class of true ——result: boolean

And here are some additional examples:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

104

Class Reference

class of "Some text" —-result: text

class of {1, 2, "hello"} —-result: list

constant

A word with a predefined value.

Constants are generally used for enumerated types. You cannot define constants in scripts; constants can be
defined only by applications and by AppleScript. See “Global Constants in AppleScript” (page 41) for more
information.

Properties of constant objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always constant.

Operators

The operators that take constant objects as operands are &, =, #, and as.

Coercions Supported
AppleScript supports coercion of a constant object to a single-item list (page 112) or a text (page 123)
object.

Examples

One place you use constants defined by AppleScript is in text comparisons performed with considering or
ignoring statements (describedin considering / ignoring (text comparison) (page 244)). Forexample,
in the following script statements, punctuation, hyphens, and white space are constants:

considering punctuation but ignoring hyphens and white space
"bet-the farm," = "BetTheFarm," —-result: true
end considering

class of hyphens ——result: constant

The final statement shows that the class of hyphens is constant.

Discussion
Constants are not text strings, and they must not be surrounded by quotation marks.

Literal constants are defined in “Literals and Constants” (page 20).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

105

Class Reference

In addition to the constants defined by AppleScript, applications often define enumerated types to be used
for command parameters or property values. For example, the iTunes search command defines these constants
for specifying the search area:

albums
all
artists
composers
displayed

songs

date

Specifies the day of the week, the date (month, day of the month, and year), and the time (hours, minutes, and
seconds).

To get the current date, use the command current date (page 155):

set theDate to current date

——result: "Friday, November 9, 2007 11:35:50 AM"

You can get and set the different parts of a date object through the date and time properties described below.

When you compile a script, AppleScript displays date and time values according to the format specified in
System Preferences.

Properties of date objects
class

Access: read only
Class: class (page 104)
The class identifier for the object. The value of this property is always date.

day

Access: read/write
Class: integer (page 110)
Specifies the day of the month of a date object.

weekday

Access: read only
Class: constant (page 105)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

106

Class Reference

Specifies the day of the week of a date object, with one of these constants: Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, or Sunday.

month

Access: read/write

Class: constant (page 105)

Specifies the month of the year of a date object, with one of the constants January, February,March, April,
May, June, July, August, September, October,November, or December.

year

Access: read/write
Class: integer (page 110)
Specifies the year of a date object; for example, 2004.

time

Access: read/write

Class: integer (page 110)

Specifies the number of seconds since midnight of a date object; for example, 2700 is equivalent to 12:45 AM
(2700 / 60 seconds = 45 minutes).

date string

Access: read only
Class: text (page 123)
A text object that specifies the date portion of a date object; for example, "Friday, November 9, 2007".

To obtain a compact version of the date, use short date string.Forexample, short date string of
(current date) —--result: "1/27/08".

time string

Access: read only
Class: text (page 123)
A text object that specifies the time portion of a date object; for example, "'3:20:24 PM".

Operators

The operators that take date object as operands are &, +, —, =, #, >, =, <, <, comes before, comes after,
and as. In expressions containing >, =, <, <, comes before, or comes after, a later time is greater than an
earlier time.

AppleScript supports the following operations on date objects with the + and — operators:

date + timeDifference
——result: date

date - date

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

107

Class Reference

—result: timeDifference
date - timeDifference

——result: date

where timeDifference is an integer (page 110) value specifying a time difference in seconds. To simplify
the notation of time differences, you can also use one or more of these of these constants:

minutes
60
hours

60 * minutes

days

24 % hours
weeks

7 * days

Here's an example:

date "Friday, November 9, 2007" + 4 x days + 3 * hours + 2 *x minutes

——result: date "Tuesday, November 13, 2007 3:02:00 AM"

To express a time difference in more convenient form, divide the number of seconds by the appropriate
constant:

31449600 / weeks ——result: 52.0

To get an integral number of hours, days, and so on, use the div operator:

151200 div days —-result: 1

To get the difference, in seconds, between the current time and Greenwich mean time, use the time to
GMT (page 208) command.

Coercions Supported

AppleScript supports coercion of a date object to a single-item list (page 112) or a text (page 123) object.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

108

Class Reference

Examples

The following expressions show some options for specifying a date, along with the results of compiling the
statements. If you construct a date using only partial information, AppleScript fills in the missing pieces with
default values. The actual format is based on the settings in System Preferences.

date "8/9/2007, 17:06"

——result: date "Thursday, August 9, 2007 5:06:00 PM"
date "7/16/70"

——result: date "Wednesday, July 16, 2070 12:00:00 AM"
date "12:06" —— specifies a time on the current date

——result: date "Friday, November 9, 2007 12:06:00 PM"
date '"Sunday, December 12, 1954 12:06 pm"

——result: date "Sunday, December 12, 1954 12:06:00 PM"

The following statements access various date properties (results depend on the date the statements are
executed):

set theDate to current date --using current date command
—-result: date "Friday, November 9, 2007 11:58:38 AM"
weekday of theDate —--result: Friday

day of theDate —-result: 9

month of theDate —-result: November

year of theDate —-result: 2007

time of theDate —-result: 43118 (seconds since 12:00:00 AM)
time string of theDate —-result: "11:58:38 AM"

date string of theDate —-result: "Friday, November 9, 2007"

If you want to specify a time relative to a date, you can do so by using of, relative to, or in, as shown in
the following examples.

date "2:30 am" of date "Jan 1, 2008"

—result: date "Tuesday, January 1, 2008 2:30:00 AM"
date "2:30 am" of date "Sun Jan 27, 2008"

—result: date "Sunday, January 27, 2008 2:30:00 AM"
date "Nov 19, 2007" relative to date "3PM"

—result: date "Monday, November 19, 2007 3:00:00 PM"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

109

Class Reference

date "1:30 pm" in date "April 1, 2008"
—result: date "Tuesday, April 1, 2008 1:30:00 PM"

Special Considerations
You can create a date object using a string that follows the date format specified in the Formats pane in
International preferences. For example, in US English:

set myDate to date "3/4/2008"

When you compile this statement, it is converted to the following:

set myDate to date "Tuesday, March 4, 2008 12:00:00 AM"

file

A reference to a file, folder, or volume in the file system. A file object has exactly the same attributes as an
alias object, with the addition that it can refer to an item that does not exist.

For related information, see alias (page 98) and POSIX file (page 116). For a description of the format for a
file path, see “Aliases and Files” (page 47).

Coercions Supported

AppleScript supports coercion of a file object to a text (page 123) object or single-item list (page 112).

Examples

set fp to open for access file "Leopard:Users:myUser:NewFile"

close access fp

Discussion

You can create a Tile object that refers to a file or folder that does not exist. For example, you can use the
choose file name (page 144) command to obtain a file object for a file that need not currently exist.
integer

A number without a fractional part.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

110

Class Reference

Properties of integer objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always integer.

Operators

The operators that can have integer values as operands are +, —, *, = (or /), div, mod, *, =, # >, 2, <, and =.

The div operator always returns an integer value as its result. The +, —, *, mod, and ~ operators return values
of type integer or real.

Coercions Supported
AppleScript supports coercion of an integer value to a single-item 1ist (page 112),a real (page 116) number,
or a text (page 123) object.

Coercion of an integer to a number does nothing:

set myCount to 7 as number

class of myCount ——result: integer

Examples

1

set myResult to 3 - 2
-1

1000

Discussion

The biggest value (positive or negative) that can be expressed as an integer in AppleScript is 536870911,
which is equal to £(2A29 - 1). Larger integers are converted to real numbers, expressed in exponential notation,
when scripts are compiled.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

m

Class Reference

Note: The smallest possible integer value is actually -536870912 (-2/A29), but it can only be
generated as a result of an expression. If you enter it directly into a script, it will be converted to a

real when you compile.

list

An ordered collection of values. The values contained in a list are known as items. Each item can belong to

any class.

A list appears in a script as a series of expressions contained within braces and separated by commas. An empty
list is a list containing no items. It is represented by a pair of empty braces: {}.

Properties of list objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always 1ist.

length

Access: read only
Class: integer (page 110)
Specifies he number of items in the list.

rest

Access: read only
Class: list (page 112)
A list containing all items in the list except the first item.

reverse

Access: read only
Class: list (page 112)
A list containing all items in the list, but in the opposite order.

Elements of list objects
item
A value contained in the list. Each value contained in a list is an item and an item may itself be another
list. You can refer to values by their item numbers. For example, item 2 of {"soup", 2, "nuts"}is

the integer 2.

You can also refer to indexed list items by class. For example, integer 1 of {"oatmeal", 42, "new"}

returns 42.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

12

Class Reference

Operators

The operators that can have list values as operands are &, =, #, starts with, ends with, contains, and
is contained by.

For detailed explanations and examples of how AppleScript operators treat lists, see “Operators Reference” (page
226).

Commands Handled
You can count the items in a list or the elements of a specific class in a list with the count (page 154) command.
You can also use the length property of a list:

count {"a", "b", "c", 1, 2, 3} ——result: 6
length of {"a", "b", "c", 1, 2, 3} ——result: 6

Coercions Supported

AppleScript supports coercion of a single-item list to any class to which the item can be coerced if it is not part
of a list.

AppleScript also supports coercion of an entire list to a text (page 123) object if each of the items in the list
can be coerced to a text object, as in the following example:

{5, "George", 11.43, "Bill"} as text —-result: "5Georgell.43Bill"

The resulting text object concatenates all the items, separated by the current value of the AppleScript property
text item delimiters. This property defaults to an empty string, so the items are simply concatenated.
For more information, see “text item delimiters” (page 42).

Individual items in a list can be of any class, and AppleScript supports coercion of any value to a list that contains
a single item.

Examples
The following statement defines a list that contains a text object, an integer, and a Boolean value:

{ "it's", 2, true }

Each list item can be any valid expression. The following list has the same value as the previous list:

{ lli.tll & Illsll, 1 + 1, 4 > 3 }

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

13

Class Reference

The following statements work with lists; note that the concatenation operator (&) joins two lists into a single
list:

class of {"this", "is", "a", "list"} ——result: list

item 3 of {"this", "is", "a", "list"} ——result: "a"

items 2 thru 3 of {"soup", 2, "nuts"} ——result: {2, "nuts"}

{"This"} & {"is", "a", "list"} ——result: {"This", "is", "a", "list"}

For large lists, it is more efficient to use the a reference to operator when inserting a large number of
items into a list, rather than to access the list directly. For example, using direct access, the following script
takes about 10 seconds to create a list of 10,000 integers (results will vary depending on the computer and
other factors):

set biglList to {}
set numItems to 10000
set t to (time of (current date)) —--Start timing operations
repeat with n from 1 to numItems
copy n to the end of biglList
—— DON'T DO THE FOLLOWING—-it's even slower!
—— set biglList to bigList & n
end

set total to (time of (current date)) - t —End timing

But the following script, which uses the a reference to operator, creates a list of 100,000 integers (ten
times the size) in just a couple of seconds (again, results may vary):

set biglList to {}
set biglListRef to a reference to biglList
set numItems to 100000
set t to (time of (current date)) —--Start timing operations
repeat with n from 1 to numItems
copy n to the end of bigListRef
end

set total to (time of (current date)) - t —End timing

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

14

Class Reference

Similarly, accessing the items in the previously created list is much faster usinga reference to—the following
takes just a few seconds:

set t to (time of (current date)) —--Start timing

repeat with n from 1 to numItems —- where numItems = 100,000
item n of bigListRef

end repeat

set total to (time of (current date)) - t —End timing

However, accessing the list directly, even for only 4,000 items, can take over a minute:

set numItems to 4000
set t to (time of (current date)) —--Start timing
repeat with n from 1 to numItems
item n of biglList
end repeat

set total to (time of (current date)) - t ——End timing

number

An abstract class that can represent an integer ora real.

There is never an object whose class is number; the actual class of a "number" object is always one of the more
specific types, integer (page 110) or real (page 116).

Properties of number objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always either integer or real.

Operators

Because values identified as values of class number are really values of either class integer or class real, the
operators available are the operators described in the definitions of the integer (page 110) or real (page 116)
classes.

Coercions Supported
Coercing an object to number results in an integer object if the result of the coercion is an integer, ora
real object if the result is a non-integer number.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

115

Class Reference

Examples
Any valid literal expression for an integer ora real value is also a valid literal expression for a number value:

1

2

-1

1000
10.2579432
1.0

1.

POSIX file

A pseudo-class equivalent to the file class.

There is never an object whose class is POSIX file; the result of evaluating a POSIX file specifierisa file
object. The difference between file and POSIX file objectsisin how they interpret name specifiers: a
POSIX file objectinterprets ''name" as a POSIX path, while a file object interprets it as an HFS path.

For related information, see alias (page 98) and file (page 110). For a description of the format for a POSIX

path, see “Aliases and Files” (page 47).

Properties of POSIX file objects

See file (page 110).

Coercions Supported

See file (page 110).

Examples
The following example asks the user to specify a file name, starting in the temporary directory /tmp, which is
difficult to specify using a file specifier:

set fileName to choose file name default location (POSIX file "/tmp")

-result: dialog starts in /tmp folder

real

Numbers that can include a fractional part, such as 3.14159 and 1.0.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

116

Class Reference

Properties of real objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always real.

Operators

The operators that can have real values as operands are +, —, %, = (or /), div, mod, *, =, #, >, =, <, and =.

The + and / operators always return real values as their results. The +, —, *, mod, and ~ operators return real
values if either of their operands is a real value.

Coercions Supported

AppleScript supports coercion of a real value to an integer value, rounding any fractional part.

AppleScript also supports coercion of a real value to a single-item 1ist (page 112) or a text (page 123) object.
Coercion to text uses the decimal separator specified in Numbers in the Formats pane in International
preferences.

Examples

10.2579432
1.0
1.

As shown in the third example, a decimal point indicates a real number, even if there is no fractional part.

Real numbers can also be written using exponential notation. A letter e is preceded by a real number (without
intervening spaces) and followed by an integer exponent (also without intervening spaces). The exponent can
be either positive or negative. To obtain the value, the real number is multiplied by 10 to the power indicated
by the exponent, as in these examples:

1.0e5 ——equivalent to 1.0 * 1075, or 100000
1.0e+5 ——same as 1.0e5

1.0e-5 ——equivalent to 1.0 * 10~-5, or .00001

Discussion

Real numbers that are greater than or equal to 10,000.0 or less than or equal to 0.0001 are converted to
exponential notation when scripts are compiled. The largest value that can be evaluated (positive or negative)
is 1.797693e+308.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

17

Class Reference

record

An unordered collection of labeled properties. The only AppleScript classes that support user-defined properties
are record and script.

A record appears in a script as a series of property definitions contained within braces and separated by commas.
Each property definition consists of a label, a colon, and the value of the property. For example, this is a record
with two properties: {product:"pen", price:2.34}.

Each property in a record has a unique label which distinguishes it from other properties in the collection. The
values assigned to properties can belong to any class. You can change the class of a property simply by assigning
a value belonging to another class.

Properties of record objects
class

Access: read/write
Class: class (page 104)
The class identifier for the record. By default, the value is record.

If you define a class property explicitly in a record, the value you define replaces the implicit class value. In the
following example, the class is set to integer:

set myRecord to {class:integer, min:1, max:10}

class of myRecord ——-result: integer

length

Access: read only
Class: integer (page 110)
Specifies the number of properties in the record.

Operators

The operators that can have records as operands are §, =, #, contains,and is contained by.

For detailed explanations and examples of how AppleScript operators treat records, see “Operators
Reference” (page 226).

Commands Handled
You can count the properties in a record with the count command:

count {name:"Robin", mileage:400} ——result: 2

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

18

Class Reference

Coercions Supported

AppleScript supports coercion of records to lists; however, all labels are lost in the coercion and the resulting
list cannot be coerced back to a record.

Examples
The following example shows how to change the value of a property in a record:

set myRecord to {product:"pen", price:2.34}

product of myRecord —— result: "pen"

set product of myRecord to "pencil"

product of myRecord —— result: "pencil"

AppleScript evaluates expressions in a record before using the record in other expressions. For example, the
following two records are equivalent:

{ name:"Steve", height:76 - 1.5, weight:150 + 20 }
{ name:"Steve", height:74.5, weight:170 }

You cannot refer to properties in records by numeric index. For example, the following object specifier, which
uses the index reference form on a record, is not valid.

item 2 of { name:"Rollie", IQ:186, city:"Unknown" } ——result: error

You can access the length property of a record to count the properties it contains:

length of {name:"Chris", mileage:1957, city:"Kalamazoo"} —-result: 3

You can get the same value with the count (page 154) command:

count {name:"Chris", mileage:1957, city:"Kalamazoo"} --result: 3

Discussion
After you define a record, you cannot add additional properties to it. You can, however, concatenate records.
For more information, see & (concatenation) (page 236).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

19

Class Reference

reference
An object that encapsulates an object specifier.

The result of the a reference to (page 237) operator is a reference object, and object specifiers returned
from application commands are implicitly turned into reference objects.

A reference object “wraps” an object specifier. If you target a reference object with the get (page 164)
command, the command returns the reference object itself. If you ask a reference object forits contents
property, it returns the enclosed object specifier. All other requests to a reference object are forwarded to
its enclosed object specifier. For example, if you ask for the class of a reference object, you get the class
of the object specified by its object specifier.

For related information, see “Object Specifiers” (page 30).

Properties of reference objects

Other than the contents property, all other property requests are forwarded to the enclosed object specifier,
so the reference object appears to have all the properties of the referenced object.

contents

Access: depends on the referenced object or objects
Class: depends on the referenced object or objects
The enclosed object specifier.

Operators

All operators are forwarded to the enclosed object specifier, so the reference object appears to support all the
operators of referenced object.

The a reference to operator returns a reference object as its result.

Coercions Supported

All coercions are forwarded to the enclosed object specifier, so the reference object appears to support all the
coercions of referenced object.

Examples
Reference objects are most often used to specify application objects. The following example creates a reference
to a window within the TextEdit application:

set myWindow to a ref to window "top.rtf" of application "TextEdit"

——result: window "top.rtf" of application "TextEdit"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

120

Class Reference

In subsequent script statements, you can use the variable myWindow in place of the longer term window
"top.rtf" of application "TextEdit".

Because all property requests other than contents of are forwarded to its enclosed specifier, the reference
object appears to have all the properties of the referenced object. For example, both class of statements
in the following example return window:

set myRef to a reference to window 1
class of contents of myRef —— explicit dereference using "contents of"

class of myRef —-— implicit dereference

For additional examples, see the a reference to (page 237) operator.

RGB color

A type definition for a three-item list of integer values, from 0 to 65535, that specify the red, green, and blue
components of a color.

Otherwise, behaves exactly like a 1ist (page 112) object.

Examples

set whiteColor to {65535, 65535, 65535} —— white
set yellowColor to {65535, 65535, 0} —— yellow
yellowColor as string ——result: "65535655350"
set redColor to {65535, @, 0} —— red

set userColor to choose color default color redColor

script
A collection of AppleScript declarations and statements that can be executed as a group.

The syntax for a script object is described in “Defining Script Objects” (page 68).

Properties of script objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

121

Class Reference

name

Access: read-only

Class: text (page 123)

The name of the script object, implicitly defined in AppleScript 2.3 and later. For top-level scripts, this is the name
of the file the script is saved in, unless explicitly defined otherwise using a property, or, for a top-level script saved
as a script bundle, using the Info.plist key CFBund leName. Script Editor’s Bundle Contents drawer includes a “Name”
field to set this value. For other script objects, it is the name the script was defined with, as text.

id

Access: read-only

Class: text (page 123)

The unique identifier of the script object, implicitly defined in AppleScript 2.3 and later. Its valueismissing value
unless explicitly defined using a property, or, for a top-level script saved as a script bundle, using the Info.plist key
CFBundleIdentifier. Script Editor's Bundle Contents drawer includes an “Identifier” field to set this value.

version

Access: read-only

Class: text (page 123)

The version of the script object, implicitly defined in AppleScript 2.3 and later. For top-level scripts, its valueis "' 1. 0"
unless explicitly defined using a property, or, for a script bundle, using the Info.plist key
CFBundleShortVersionString. Script Editor’s Bundle Contents drawer includes a “Short Version” field to set
this value. For other script objects, its default value ismissing value. While the version may resemble a number,
it is actually of type text (page 123). For best results, compare version strings using considering numeric
strings.

Commands Handled
You can copy a script object with the copy (page 153) command or create a reference to it with the set (page

197) command.

Coercions Supported

AppleScript supports coercion of a script object to a single-item list (page 112).

Examples
The following example shows a simple script object that displays a dialog. It is followed by a statement that
shows how to run the script:

script helloScript
display dialog "Hello."

end script

run helloScript —— invoke the script

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

122

Class Reference

Discussion
A script object can contain other script objects, called child scripts, and can have a parent object. For
additional information, including more detailed examples, see “Script Objects” (page 68).

The name, id, and version properties are automatically defined in OS X Mavericks v10.9 (AppleScript 2.3)
and later, and are used to identify scripts used as libraries, as described in “Script Objects” (page 68).

text

An ordered series of Unicode characters.

Starting in AppleScript 2.0, AppleScript is entirely Unicode-based. There is no longer a distinction between
Unicode and non-Unicode text. Comments and text constants in scripts may contain any Unicode characters,
and all text processing is done in Unicode, so all characters are preserved correctly regardless of the user’s
language preferences.

For example, the following script works correctly in AppleScript 2.0, where it would not have in previous
versions:

set jp to "0OO0"
set ru to "Pycckun"

jp & " and " & ru —— returns "[JJJ and Pycckui"

For information on compatibility with previous AppleScript versions, including the use of string and Unicode
text as synonyms for text, see the Special Considerations section.

Properties of text objects
class

Access: read-only
Class: class (page 104)
The class identifier for the object. The value of this property is always text.

id

Access: read-only

Class: integer (page 110) or list (page 112) of integer

A value (or list of values) representing the Unicode code point (or code points) for the character (or characters) in
the text object. (A Unicode code point is a unique number that represents a character and allows it to be represented
in an abstract way, independent of how it is rendered. A character in a text object may be composed of one or
more code points.)

This property, added in AppleScript 2.0, can also be used as an address, which allows mapping between Unicode
code point values and the characters at those code points. For example, id of "A" returns 65, and character
id 65 returns "A".

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

123

Class Reference

The id of text longer than one code point is a list of integers, and vice versa: for example, id of "hello" returns
{104, 101, 108, 108, 111},andstring id {104, 101, 108, 108, 111} returns''hello".
(Because ofabug, text id ... doesnotwork;youmustuseoneof string,Unicode text,orcharacter.)

These uses of the 1d property obsolete the older ASCII character (page 137) and ASCII number (page 138)
commands, since, unlike those, they cover the full Unicode character range and will return the same results regardless
of the user's language preferences.

length

Access: read only
Class: integer (page 110)
The number of characters in the text.

quoted form

Access: read only

Class: text (page 123)

A representation of the text that is safe from further interpretation by the shell, no matter what its contents are.
Mainly useful for passing a text string to the do shell script (page 163) command.

Elements of text objects

A text object can contain these elements (which may behave differently than similar elements used in
applications):

character
Specify by: “Arbitrary” (page 212), “Every” (page 213), “Index” (page 218), “Middle” (page 220), “Range” (page
222)

One or more Unicode characters that make up the text.

Starting in AppleScript 2.0, elements of text object count a combining character cluster (also known as
a Unicode grapheme cluster) as a single character. (This relates to a feature of Unicode that is unlikely to
have an impact on most scripters: some “characters” may be represented as either a single entity or as a
base character plus a series of combining marks.

For example, “é” may be encoded as either U+00E9 (LATIN SMALL LETTER E WITH ACUTE) or as U+0065
(LATIN SMALL LETTER E), U+0301 (COMBINING ACUTE ACCENT). Nonetheless, AppleScript 2.0 will count
both as one character, where older versions counted the base character and combining mark separately.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

124

Class Reference

paragraph

Specify by: “Arbitrary” (page 212), “Every” (page 213), “Index” (page 218), “Middle” (page 220), “Range” (page
222)

A series of characters beginning immediately after either the first character after the end of the preceding

paragraph or the beginning of the text and ending with either a carriage return character (\r), a linefeed
character (\n), a return/linefeed pair (\ r\n), or the end of the text. The Unicode "paragraph separator"
character (U+2029) is not supported.

Because paragraph elements are separated by a carriage return, linefeed, or carriage return/linefeed
pair, text ending with a paragraph break specifies a following (empty) paragraph. For example,
"this\nthat\n" has three paragraphs, not two: "this", "that", and " (the empty paragraph after the
trailing linefeed).

Similarly, two paragraph breaks in a row specify an empty paragraph between them:

paragraphs of "this\n\nthat" --result: {"this", "", "that"}

text
Specify by: “Every” (page 213), “Name” (page 221)
All of the text contained in the text object, including spaces, tabs, and all other characters.

You can use text to access contiguous characters (but see also the Discussion section below):

text 1 thru 5 of "Bring me the mouse." ——result: "Bring"

word

Specify by: “Arbitrary” (page 212), “Every” (page 213), “Index” (page 218), “Middle” (page 220), “Range” (page
222)

A continuous series of characters, with word elements parsed according to the word-break rules set in the
International preference pane.

Because the rules for parsing words are thus under user control, your scripts should not count on a
deterministic text parsing of words.

Operators
The operators that can have text objects as operands are &, =, #, >, =, <, <,starts with,ends with,
contains, is contained by, and as.

In text comparisons, you can specify whether white space should be considered or ignored. For more information,
see “considering and ignoring Statements” (page 244).

For detailed explanations and examples of how AppleScript operators treat text objects, see “Operators
Reference” (page 226).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

125

Class Reference

Special String Characters

The backslash (\) and double-quote (") characters have special meaning in text. AppleScript encloses text in
double-quote characters and uses the backslash character to represent return (\ r), tab (\t), and linefeed (\n)
characters (described below). So if you want to include an actual backslash or double-quote character in a
text object, you must use the equivalent two-character sequence. As a convenience, AppleScript also provides
the text constant quote, which has the value \".

Table 6-1 Special characters in text

Character To insert in text
Backslash character (\) A\

Double quote (") \"

quote (text constant)

To declare a text object that looks like this when displayed:

He said "Use the '\' character."

you can use the following:

"He said \"Use the '\\' character.\""

White space refers to text characters that display as vertical or horizontal space. AppleScript defines the white
space constants return, linefeed, space, and tab to represent, respectively, a return character, a linefeed
character, a space character, and a tab character. (The linefeed constant became available in AppleScript
2.0.)

Although you effectively use these values as text constants, they are actually defined as properties of the global
constant AppleScript.

Table 6-2 White space constants

Constant Value
space "
tab "\t"
return "\r"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

126

Class Reference

Constant Value

linefeed "\n"

To enter white space in a string, you can just type the character—that is, you can press the Space bar to insert
a space, the Tab key to insert a tab character, or the Return key to insert a return. In the latter case, the string
will appear on two lines in the script, like the following:

display dialog "Hello" & "
" & "Goodbye"

When you run this script, "Hello" appears above “Goodbye” in the dialog.

You can also enter a tab, return, or linefeed with the equivalent two-character sequences. When a text object
containing any of the two-character sequences is displayed to the user, the sequences are converted. For
example, if you use the following text objectina display dialog (page 158) command:

display dialog "item 1\tl\ritem 2\t2"

it is displayed like this (unless you enable “Escape tabs and line breaks in strings” in the Editing tab of the of
Script Editor preferences):

item 1 1
item 2 2

To use the white space constants, you use the concatenation operator to join multiple text objects together,
as in the following example:

"Year" & tab & tab & "Units sold" & return & "2006" & tab -
& tab & "300" & return & '"2007" & tab & tab & "453"

When passed to display dialog, this text is displayed as follows:

Year Units sold
2006 300
2007 453

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

127

Class Reference

Coercions Supported

AppleScript supports coercion of an text object to a single-item list (page 112). If a text object represents
an appropriate number, AppleScript supports coercion of the text object to an integer or a real number.

Examples
You can define a text object in a script by surrounding text characters with quotation marks, as in these
examples:

set theObject to "some text"
set clientName to "Mr. Smith"

display dialog "This is a text object."

Suppose you use the following statement to obtain a text object named docText that contains all the text
extracted from a particular document:

set docText to text of document "MyFavoriteFish.rtf" of application "TextEdit"

The following statements show various ways to work with the text object docText:

class of docText ——result: text
first character of docText —-result: a character
every paragraph of docText ——result: a list containing all paragraphs

paragraphs 2 thru 3 of docText ——-result: a list containing two paragraphs

The next example prepares a text object to use with the display dialog command. It uses the quote
constant to insert \"" into the text. When this text is displayed in the dialog (above a text entry field), it looks
like this: Enter the text in quotes ("text in quotes"):

set promptString to "Enter the text in quotes (" & quote -
& "text in quotes" & quote & '"): "
display dialog promptString default answer ""

The following example gets a POSIX path to a chosen folder and uses the quoted form property to ensure
correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

128

Class Reference

Suppose that you choose the folder named iWork '@8inyourApplications folder. The previous statement
would return the following result, which properly handles the embedded single quote and space characters
in the folder name:

"'/Applications/iWork '\\''@8/'"

Discussion
To get a contiguous range of characters within a text object, use the text element. For example, the value
of the following statement is the text object "y thi":

get text 3 thru 7 of "Try this at home"
——result: "y thi"

The result of a similar statement using the character element instead of the text element is a list:

get characters 3 thru 7 of "Try this at home"

——result: {llyll’ n ||’ “t", “h", “i"}

You cannot set the value of an element of a text object. For example, if you attempt to change the value of
the first character of the text object myName as shown next, you'll get an error:

set myName to '"Boris"
set character 1 of myName to "D"

——result: error: you cannot set the values of elements of text objects

However, you can achieve the same result by getting the last four characters and concatenating them with
IlDII:

set myName to "boris"
set myName to "D" & (get text 2 through 5 of myName)

——result: "Doris"

This example doesn’t actually modify the existing text object—it sets the variable myName to refer to a new
text object with a different value.

Special Considerations
For compatibility with versions prior to AppleScript 2.0, string and Unicode text are still defined, but are
considered synonyms for text. For example, all three of these statements have the same effect:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

129

Class Reference

someObject as text
someObject as string

someObject as Unicode text

In addition, text, string, and Unicode text will all compare as equal. For example, class of '"foo"
is stringis true, eventhough class of "foo" returns text. However, it is still possible for applications
to distinguish between the three different types, even though AppleScript itself does not.

Starting with AppleScript 2.0, there is no style information stored with text objects.

Because all text is Unicode text, scripts now always get the Unicode text behavior. This may be different from
the former string behavior for some locale-dependent operations, in particular word elements. To get the
same behavior with 2.0 and pre-2.0, add an explicit as Unicode text coercion, for example, words of
(someText as Unicode text).

Because text item delimiters (described in “text item delimiters” (page 42)) respect considering and
ignoring attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they were always
case-sensitive. To enforce the previous behavior, add an explicit considering case statement.

Because AppleScript 2.0 scripts store all text as Unicode, any text constants count as a use of the former
Unicode text class, which will work with any version of AppleScript back to version 1.3. A script that contains
Unicode-only characters such as Arabic or Thai will run, but will not be correctly editable using versions prior
to AppleScript 2.0: the Unicode-only characters will be lost.

unit types

Used for working with measurements of length, area, cubic and liquid volume, mass, and temperature.

The unit type classes support simple objects that do not contain other values and have only a single property,
the class property.

Properties of unit type objects
class

Access: read only
Class: (varies; listed below)
The class identifier for the object. These are the available classes:

Length: centimetres, centimeters, feet, inches, kilometres, kilometers, metres, meters,
miles, yards

Area: square feet,square kilometres, square kilometers, square metres, square meters,
square miles, square yards

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

130

Class Reference

Cubic volume: cubic centimetres, cubic centimeters, cubic feet, cubic inches, cubic
metres, cubic meters, cubic yards

Liquid volume: gallons, litres, liters, quarts
Weight: grams, kilograms, ounces, pounds

Temperature: degrees Celsius,degrees Fahrenheit, degrees Kelvin

Operators

None. You must explicitly coerce a unit type to a number type before you can perform operations with it.

Coercions Supported

You can coerce a unit type object to integer (page 110), single-item list (page 112), real (page 116), or
text (page 123). You can also coerce between unit types in the same category, such as inches to kilometers
(length) or gallons to liters (liquid volume). As you would expect, there is no coercion between categories,
such as from gallons to degrees Centigrade.

Examples
The following statements calculate the area of a circle with a radius of 7 yards, then coerce the area to square
feet:

set circleArea to (pi % 7 x 7) as square yards ——result: square yards 153.9380400259
circleArea as square feet ——result: square feet 1385.4423602331

The following statements set a variable to a value of 5.0 square kilometers, then coerce it to various other units
of area:

set theArea to 5.0 as square kilometers —-result: square kilometers 5.0
theArea as square miles ——-result: square miles 1.930510792712

theArea as square meters ——result: square meters 5.0E+6

However, you cannot coerce an area measurement to a unit type in a different category:

set theArea to 5.0 as square meters ——result: square meters 5.0
theArea as cubic meters —-result: error

theArea as degrees Celsius ——result: error

The following statements demonstrate coercion of a unit type to a text object:

set myPounds to 2.2 as pounds ——result: pounds 2.2

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

131

Class Reference

set textValue to myPounds as text ——result: "2.2"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

132

Commands Reference

This chapter describes the commands available to perform actions in AppleScript scripts. For information on
how commands work, see “Commands Overview” (page 37).

The commands described in this chapter are available to any script—they are either built into the AppleScript
language or added to it through the standard scripting additions (described in “Scripting Additions” (page
36)).

Note: In the command descriptions below, if the first item in the Parameters list does not include
a parameter name, it is the direct parameter of the command (described in “Direct Parameter” (page
39)).

Table 7-1 lists each command according to the suite (or related group) of commands to which it belongs and
provides a brief description. Detailed command descriptions follow the table, in alphabetical order.

Table 7-1 AppleScript commands

Command Description
AppleScript suite
activate (page 136) Brings an application to the front, and opens it if it is on the

local computer and not already running.

log (page 175) In Script Editor, displays a value in the Event Log History
window or in the Event Log pane of a script window.

Clipboard Commands suite

clipboard info (page 151) Returns information about the clipboard.
set the clipboard to (page 200) Places data on the clipboard.
the clipboard (page 208) Returns the contents of the clipboard.

File Commands suite

info for (page 167) Returns information for a file or folder.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

133

Commands Reference

Command

list disks (page 171)

list folder (page 171)

mount volume (page 176)

path to (application) (page 180)
path to (folder) (page 182)

path to resource (page 186)

File Read/Write suite

close access (page 152)

get eof (page 166)

open for access (page 178)

read (page 188)
set eof (page 199)

write (page 209)

Internet suite

open location (page 179)
Miscellaneous Commands suite
current date (page 155)

do shell script (page 163)

get volume settings (page 167)

random number (page 187)

Description

Returns a list of the currently mounted volumes.

Deprecated Use tell application "System Events
to get the name of every disk.

Returns the contents of a specified folder.

Deprecated Use tell application "System Events
to get the name of every disk item of ...

Mounts the specified AppleShare volume.
Returns the full path to the specified application.
Returns the full path to the specified folder.

Returns the full path to the specified resource.

Closes a file that was opened for access.
Returns the length, in bytes, of a file.

Opens a disk file for the read (page 188) and write (page
209) commands.

Reads data from a file that has been opened for access.
Sets the length, in bytes, of a file.

Writes data to a file that was opened for access with write
permission.

Opens a URL with the appropriate program.

Returns the current date and time.
Executes a shell script using the sh shell.
Returns the sound output and input volume settings.

Generates a random number.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

134

Commands Reference

Command

round (page 191)

set volume (page 201)
system attribute (page 205)
system info (page 206)

time to GMT (page 208)

Scripting suite

load script (page 172)

run script (page 194)

scripting components (page 196)
store script (page 202)
Standard suite

copy (page 153)

count (page 154)

get (page 164)

launch (page 170)

run (page 193)

set (page 197)

String Commands suite

ASCII character (page 137)

Description

Rounds a number to an integer.

Sets the sound output and/or input volume.

Gets environment variables or attributes of this computer.
Returns information about the system.

Returns the difference between local time and GMT
(Universal Time).

Returns a script object loaded from a file.
Runs a script or script file
Returns a list of all scripting components.

Stores a script object into a file.

Copies one or more values into variables.
Counts the number of elements in an object.

Returns the value of a script expression or an application
object.

Launches the specified application without sendingita run
command.

For an application, launches it. For a script application,
launches it and sends it the run command. For a script script
object, executes its run handler.

Assigns one or more values to one or more script variables
or application objects.

Converts a number to a character.

Deprecated starting in AppleScript 2.0. Use the id property
of the text (page 123) class instead.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

135

Commands Reference

Command

ASCII number (page 138)

localized string (page 172)
offset (page 177)

summarize (page 204)

User Interaction suite

beep (page 139)

choose application (page 139)
choose color (page 141)
choose file (page 142)
choose file name (page 144)
choose folder (page 145)
choose from list (page 147)

choose remote application (page 149)

choose URL (page 150)

delay (page 155)

display alert (page 156)
display dialog (page 158)
display notification (page 162)

say (page 195)

activate

Description

Converts a character to its numeric value.

Deprecated starting in AppleScript 2.0. Use the id property
of the text (page 123) class instead.

Returns the localized string for the specified key.
Finds one piece of text inside another.

Summarizes the specified text or text file.

Beeps one or more times.

Allows the user to choose an application.

Allows the user to choose a color.

Allows the user to choose afile.

Allows the user to specify a new file reference.

Allows the user to choose a folder.

Allows the user to choose one or more items from a list.

Allows the user to choose a running application on a remote
machine.

Allows the user to specify a URL.

Pauses for a fixed amount of time.

Displays an alert.

Displays a dialog box, optionally requesting user input.
Displays a notification.

Speaks the specified text.

Brings an application to the front, launching it if necessary.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

136

Commands Reference

Syntax

activate app[ication required

Parameters

application
The application to activate.

Result
None.

Examples

activate application "TextEdit"

tell application "TextEdit" to activate

Discussion
The activate command does not launch applications on remote machines. For examples of other ways to
specify an application, see the application (page 99) class and “Remote Applications” (page 50).

ASCII character

Returns the character for a specified number.

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text
class instead.

Syntax

ASCII character integer required

Parameters

integer (page 110)
The character code, an integer between 0 and 255.

Result
A text (page 123) object containing the character that corresponds to the specified number.

Signals an error if integer is out of range.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

137

Commands Reference

Examples

set theChar to ASCII character 65 ——result: "A"
set theChar to ASCII character 194 —-result: "-"

set theChar to ASCII character 2040 ——result: invalid range error

Discussion

The name “ASCII” is something of a misnomer. ASCII character usesthe primary text encoding, as determined
by the user’s language preferences, to map between integers and characters. If the primary language is English,
the encoding is Mac OS Roman, if it is Japanese, the encoding is MacJapanese, and so on. For integers below
128, this is generally the same as ASCII, but for integers from 128 to 255, the results vary considerably.

Because of this unpredictability, ASCII characterandASCII number are deprecated starting in AppleScript
2.0. Use the id property of the text class instead, since it always uses the same encoding, namely Unicode.

ASCII number

Returns the number associated with a specified character.

Important: This command is deprecated starting in AppleScript 2.0—use the id property of the text
class instead.

Syntax

ASCII number text required

Parameters

text (page 123)
A text object containing at least one character. If there is more than one character, only the first one is

used.

Result
The character code of the specified character as an integer.

Examples

set codeValue to ASCII number "-" ——result: 194

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

138

Commands Reference

Discussion
The result of ASCII number depends on the user’s language preferences; see the Discussion section of ASCII
character (page 137) for details.

beep

Plays the system alert sound one or more times.

Syntax
beep required
integer optional
Parameters

integer (page 110)
Number of times to beep.

Default Value:
1

Result
None.

Examples
Audible alerts can be useful when no one is expected to be looking at the screen:

beep 3 —-result: three beeps, to get attention

display dialog "Something is amiss here!" —— to show message

choose application

Allows the user to choose an application.

Syntax

choose application required
with title text optional
with prompt text optional
multiple selections allowed poolean optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

139

Commands Reference

as class optional

Parameters

with title text (page 123)
Title text for the dialog.

Default Value:
"Choose Application"

with prompt text (page 123)
A prompt to be displayed in the dialog.

Default Value:
"Select an application:"

multiple selections allowed boolean (page 102)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly
one item.

Default Value:
false
as class (application (page 99) | alias (page 98))
Specifies the desired class of the result. If specified, the value must be one of applicationoralias.

Default Value:
application

Result
The selected application, as eitheran application oralias object; forexample, application "TextEdit".
If multiple selections are allowed, returns a list containing one item for each selected application, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors, see
“try Statements” (page 262).

Examples

choose application with prompt "Choose a web browser:"
choose application with multiple selections allowed

choose application as alias

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

140

Commands Reference

Discussion

The choose application dialog initially presents a list of all applications registered with the system. To
choose an application not in that list, use the Browse button, which allows the user to choose an application
anywhere in the file system.

choose color

Allows the user to choose a color from a color picker dialog.

Syntax

choose color required
default color RGB color optional
Parameters

default color RGBcolor (page 121)
The color to show when the color picker dialog is first opened.

Default Value:
{0, 0, 0}:black.

Result
The selected color, represented as a list of three integers from 0 to 65535 corresponding to the red, green, and
blue components of a color; for example, {0, 65535, 0} represents green.

Signals a “user canceled” error if the user cancels the choose color dialog. For an example of how to handle
such errors, see “try Statements” (page 262).

Examples
This example lets the user choose a color, then uses that color to set the background color in their home folder
(when it is in icon view):

tell application "Finder"
tell icon view options of window of home
choose color default color (get background color)
set background color to the result
end tell
end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

141

Commands Reference

choose file

Allows the user to choose a file.

Syntax

choose file required
with prompt text optional
of type list of text optional
default location alias optional
invisibles boolean optional
multiple selections allowed poolean optional
showing package contents boolean optional
Parameters

with prompt text (page 123)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.
of type list (page 112) of text (page 123)
A list of Uniform Type Identifiers (UTls); for example, {"public.html", "public.rtf"}.Only files of
the specified types will be selectable. For a list of system-defined UTls, see Uniform Type Identifiers
Overview. To get the UTI for a particular file, use info for (page 167).

Note: Four-character file type codes, such as "PICT" or ""MooV", are also supported, but are deprecated. To get the

file type code for a particular file, use info for (page 167).

Default Value:
None; any file can be chosen.

default location alias (page 98)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the user’s Documents
folder.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

142

Commands Reference

invisibles boolean (page 102)
Show invisible files and folders?

Default Value:
true: This is only for historical compatibility reasons. Unless you have a specific need to choose
invisible files, you should always use invisibles false.

multiple selections allowed boolean (page 102)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly

one item.

Default Value:
false

showing package contents boolean (page 102)
Show the contents of packages? If true, packages are treated as folders, so that the user can choose a

file inside a package (such as an application).

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the package format
or the package itself.

Result
The selected file, as an alias. If multiple selections are allowed, returns a list containing one alias for each
selected file, if any.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors, see
“try Statements” (page 262).

Examples

set aFile to choose file with prompt "HTML or RTF:" -
of type {"public.html", "public.rtf"} invisibles false

A UTI can specify a general class of files, not just a specific format. The following script allows the user to choose
any image file, whether its format is JPEG, PNG, GIF, or whatever. It also uses the default location parameter
combined with path to (folder) (page 182) to begin browsing in the user’s Pictures folder:

set picturesFolder to path to pictures folder
choose file of type "public.image" with prompt "Choose an image:" -

default location picturesFolder invisibles false

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

143

Commands Reference

choose file name

Allows the user to specify a new filename and location. This does not create a file—rather, it returns a file
specifier that can be used to create a file.

Syntax

choose file name required
with prompt text optional
default name text optional
default location alias optional
Parameters

with prompt text (page 123)
The prompt to be displayed near the top of the dialog.

Default Value:
"Specify new file name and location"

default name text (page 123)
The default file name.

Default Value:
"untitled"

default location alias (page 98)
The default file location. See choose file (page 142) for examples.

Default Value:
Browsing starts in the last location in which a search was made or, if this is the first invocation, in
the user’s Documents folder.

Result
The selected location, as a file. For example:

file "HD:Users:currentUser:Documents:untitled"

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors, see
“try Statements” (page 262).

Examples
The following example supplies a non-default prompt and search location:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

144

Commands Reference

set fileName to choose file name with prompt '"Save report as:" -
default name "Quarterly Report" -

default location (path to desktop folder)

Discussion
If you choose the name of a file or folder that exists in the selected location, choose file name offers the
choice of replacing the chosen item. However, choosing to replace does not actually replace the item.

choose folder

Allows the user to choose a directory, such as a folder or a disk.

Syntax

choose folder required
with prompt text optional
default location alias optional
invisibles boolean optional
multiple selections allowed poolean optional
showing package contents boolean optional
Parameters

with prompt text (page 123)
The prompt to be displayed in the dialog.

Default Value:
None; no prompt is displayed.

default location alias (page 98)
The folder to begin browsing in.

Default Value:
Browsing begins in the last selected location, or, if this is the first invocation, in the user’s Documents
folder.

invisibles boolean (page 102)
Show invisible folders?

Default Value:
false

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

145

Commands Reference

multiple selections allowed boolean (page 102)
Allow multiple items to be selected? If true, the results will be returned in a list, even if there is exactly

one item.

Default Value:
false

showing package contents boolean (page 102)
Show the contents of packages? If true, packages are treated as folders, so that the user can choose a

package folder, such as an application, or a folder inside a package.

Default Value:
false. Manipulating the contents of packages is discouraged unless you control the package format
or the package itself.

Result
The selected directory, as an alias. If multiple selections are allowed, returns a list containing one alias for

each selected directory, if any.

Signals a “user canceled” error if the user cancels the choose folder dialog. For an example of how to handle
such errors, see “try Statements” (page 262).

Examples
The following example specifies a prompt and allows multiple selections:

set foldersList to choose folder -
with prompt "Select as many folders as you like:" -

with multiple selections allowed

The following example gets a POSIX path to a chosen folder and uses the quoted form property (of the
text (page 123) class) to ensure correct quoting of the resulting string for use with shell commands:

set folderName to quoted form of POSIX path of (choose folder)

Suppose that you choose the folder named iWork '@8inyourApplications folder. The previous statement
would return the following result, which properly handles the embedded single quote and space characters
in the folder name:

"'/Applications/iWork '\\''@8/'"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

146

Commands Reference

choose from 1list

Allows the user to choose items from a list.

Syntax

choose from list list required
with title text optional
with prompt text optional
default items list optional
0K button name text optional
cancel button name text optional
multiple selections allowed poolean optional
empty selection allowed boolean optional
Parameters

list (page 112) (of number (page 115) or text (page 123))
A list of numbers and/or text objects for the user to choose from.

with title text (page 123)
Title text for the dialog.

Default Value:
None; no title is displayed.

with prompt text (page 123)
The prompt to be displayed in the dialog.

Default Value:
"Please make your selection:"

default items list (page 112) (of number (page 115) or text (page 123))
A list of numbers and/or text objects to be initially selected. The list cannot include multiple items unless
you also specify multiple selections allowed true.If anitem in the default items list is notin
the list to choose from, it is ignored.

Default Value:
None; no items are selected.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

147

Commands Reference

0K button name text (page 123)
The name of the OK button.

Default Value:
1 OKII

cancel button name text (page 123)
The name of the Cancel button.

Default Value:
"Cancel"

multiple selections allowed boolean (page 102)
Allow multiple items to be selected?

Default Value:
false

empty selection allowed boolean (page 102)
Allow the user to choose OK with no items selected? If false, the OK button will not be enabled unless
at least one item is selected.

Default Value:
false

Result

If the user clicks the OK button, returns a list (page 112) of the chosen number (page 115) and/or text (page
123) items; if empty selection is allowed and nothing is selected, returns an empty list ({}). If the user clicks the
Cancel button, returns false.

Examples

This script selects from a list of all the people in Address Book who have defined birthdays, and gets the birthday
of the selected one. Notice the if the result is not false test (choose from 1list returns false
if the user clicks Cancel) and the set aName to item 1 of the result(choose from list returnsa
list, even if it contains only one item).

tell application "Address Book"
set bDayList to name of every person whose birth date is not missing value
choose from list bDayList with prompt "Whose birthday would you like?"
if the result is not false then
set aName to item 1 of the result
set theBirthday to birth date of person named aName
display dialog aName & "'s birthday is " & date string of theBirthday

end if

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

148

Commands Reference

end tell

Discussion
For historical reasons, choose from list is the only dialog command that returns a result (fa'lse) instead
of signaling an error when the user presses the “Cancel” button.

choose remote application

Allows the user to choose a running application on a remote machine.

Syntax
choose remote application required
with title text optional
with prompt text optional
Parameters

with title text (page 123)
Title text for the choose remote application dialog.

Default Value:
None; no title is displayed.

with prompt text (page 123)
The prompt to be displayed in the dialog.

Default Value:
"Select an application:"

Result
The selected application, as an application (page 99) object.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors, see
“try Statements” (page 262).

Examples

set myApp to choose remote application with prompt "Choose a remote web browser:"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

149

Commands Reference

Discussion

The user may choose a remote machine using Bonjour or by entering a specific IP address. There is no way to
limit the precise kind of application returned, so either limit your script to generic operations or validate the
user’s choice. If you want your script to send application-specific commands to the resulting application, you
will need a using terms from statement.

For information on targeting other machines, see “Remote Applications” (page 50).

choose URL

Allows the user to specify a URL.

Syntax

choose URL required
showing listOfServiceTypesOrTextStrings optional
editable URL boolean optional
Parameters

showing list (page 112) (of service types or text (page 123))
A list that specifies the types of services to show, if available. The list can contain one or more of the

following service types, or one or more text objects representing Bonjour service types (described
below), or both:

e Web servers:shows httpand https services

e FTP Servers:shows ftp services

e Telnet hosts:shows telnet services

e File servers:shows afp, nfs, and smb services
* News servers:shows nntp services

e Directory services:shows ldap services

e Media servers:shows rtsp services

e Remote applications:shows eppc services

A text object is interpreted as a Bonjour service type—for example, "' _ftp._tcp" represents the file
transfer protocol. These types are listed in Technical Q&A 1312: Bonjour service types used in OS X.

Default Value:
File servers

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

150

http://developer.apple.com/qa/qa2001/qa1312.html

Commands Reference

editable URL boolean (page 102)
Allow user to type in a URL? If you specify editable URL false, the text field in the dialog is inactive.

choose URL does not attempt to verify that the user-entered text is a valid URL. Your script should be
prepared to verify the returned value.

Default Value:
true: the user can enter a text string. If false, the user is restricted to choosing an item from the
Bonjour-supplied list of services.

Result
The URL for the service, as a text object. This result may be passed to open location (page 179) or to any
application that can handle the URL, such as a browser for http URLs.

Signals a “user canceled” error if the user cancels the dialog. For an example of how to handle such errors, see
“try Statements” (page 262).

Examples
The following script asks the user to choose an URL, either by typing in the text input field or choosing one of
the Bonjour-located servers:

set myURL to choose URL

tell application Finder to open location myURL

clipboard info

Returns information about the current clipboard contents.

Syntax
clipboard info required
for class optional
Parameters

for class (page 104)
Restricts returned information to only this data type.

Default Value:
None; returns information for all types of data as a list of lists, where each list represents a scrap
flavor.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

151

Commands Reference

Result
A list (page 112) containing one entry {class, size} for each type of data on the clipboard. To retrieve
the actual data, use the the clipboard (page 208) command.

Examples

clipboard info

clipboard info for Unicode text

close access

Closes a file opened with the open for access command.

Syntax

close access fileSpecifier required

Parameters

(alias (page 98) | file (page 110) | file descriptor)
The alias or file specifier or integer file descriptor of the file to close. A file descriptor must be obtained
as the result of an earlier open for access (page 178) call.

Result
None.

Signals an error if the specified file is not open.

Examples
You should always close files that you open, being sure to account for possible errors while using the open
file:

set aFile to choose file
set fp to open for access aFile
try
——file reading and writing here
on error e number n
——deal with errors here and don't resignal
end

close access fp

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

152

Commands Reference

Discussion
Any files left open will be automatically closed when the application exits.

copy

Copies one or more values, storing the result in one or more variables. This command only copies AppleScript
values, not application-defined objects.

Syntax
copy expression required
to variablePattern required
Parameters
expression

The expression whose value is to be copied.

to variablePattern
The name of the variable or pattern of variables in which to store the value or pattern of values. Patterns
may be lists or records.

Result
The new copy of the value.

Examples
As mentioned in the Discussion, copy creates an independent copy of the original value, and it creates a deep
copy. For example:

set alpha to {1, 2, {"a", "b"}}

copy alpha to beta

set item 2 of item 3 of alpha to "change" --change the original list
set item 1 of beta to 42 —--change a different item in the copy
{alpha, beta}

——result: {{1, 2, {"a", '"change"}}, {42, 2, {"a", "b"}}}

Each variable reflects only the changes that were made directly to that variable. Compare this with the similar
example in set (page 197).

See the set (page 197) command for examples of using variable patterns. The behavior is the same except that
the values are copied.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

153

Commands Reference

Discussion
The copy command may be used to assign new values to existing variables, or to define new variables. See
“Declaring Variables with the copy Command” (page 59) for additional details.

Using the copy command creates a new value that is independent of the original—a subsequent change to
that value does not change the original value. The copy is a “deep” copy, so sub-objects, such as lists within
lists, are also copied. Contrast this with the behavior of the set (page 197) command.

When using copy with an object specifier, the specifier itself is the value copied, not the object in the target
application that it refers to. copy therefore copies the object specifier, but does not affect the application data
at all. To copy the object in the target application, use the application’s duplicate command, if it has one.

Special Considerations
The syntax put expression into variablePattern is also supported, but is deprecated. It will be transformed
into the copy form when you compile the script.

count

Counts the number of elements in another object.

Syntax

(count | number of) expression required

Parameters

expression
An expression that evaluates to an object with elements, such as a list (page 112), record (page 118),
or application-defined container object. count will count the contained elements.

Result
The number of elements, as an integer (page 110).

Examples
In its simplest form, count, or the equivalent pseudo-property number, counts the item elements of a value.
This may be an AppleScript value, such as a list:

set alList to {"Yes", "No", 4, 5, 6}
count aList -—--result: 5

number of aList —--result: 5

..or an application-defined object that has item elements:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

154

Commands Reference

tell application "Finder" to count disk 1 —--result: 4

If the value is an object specifier that evaluates to a list, count counts the items of that list. This may be an

“Every” (page 213) specifier:

count every integer of aList -—-result: 3
count words of "hello world" -—-result: 2
tell application "Finder" to count folders of disk 1 --result: 4

..or a "Filter” (page 214) specifier:

tell application "Finder"
count folders of disk 1 whose name starts with "A" ——result: 1

end tell

...or similar. For more on object specifiers, see “Object Specifiers” (page 30).

current date

Returns the current date and time.

Syntax

current date required

Result
The current date and time, as a date (page 106) object.

Examples

current date --result: date "Tuesday, November 13, 2007 11:13:29 AM"

See the date (page 106) class for information on how to access the properties of a date, such as the day of the

week or month.

delay

Waits for a specified number of seconds.

Syntax

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

155

Commands Reference

delay required

number optional

Parameters

number (page 115)
The number of seconds to delay. The number may be fractional, such as 0.5 to delay half a second.

Default Value:
0

Result
None.

Examples

set startTime to current date
delay 3 --delay for three seconds
set elapsedTime to ((current date) - startTime)

display dialog ("Elapsed time: " & elapsedTime & " seconds")

Discussion
delay does not make any guarantees about the actual length of the delay, and it cannot be more precise than
1/60th of a second. delay is not suitable for real-time tasks such as audio-video synchronization.

display alert

Displays a standardized alert containing a message, explanation, and from one to three buttons.

Syntax
display alert text required
message text optional
as alertType optional
buttons list optional
default button buttonSpecifier optional
cancel button buttonSpecifier optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

156

Commands Reference

giving up after integer optional

Parameters

text (page 123)
The alert text, which is displayed in emphasized system font.

message text (page 123)
An explanatory message, which is displayed in small system font, below the alert text.

as alertType
The type of alert to show. You can specify one of the following alert types:
informational: the standard alert dialog

warning: the alert dialog dialog is badged with a warning icon

critical: currently the same as the standard alert dialog

Default Value:
informational

buttons list (page 112) (of text (page 123))
A list of up to three button names.

If you supply one name, a button with that name serves as the default and is displayed on the right side
of the alert dialog. If you supply two names, two buttons are displayed on the right, with the second
serving as the default button. If you supply three names, the first is displayed on the left, and the next
two on the right, as in the case with two buttons.

Default Value:
{"0K"}: One button labeled “OK which is the default button.

default button (text (page 123) or integer (page 110))
The name or number of the default button. This may be the same as the cancel button.

Default Value:
The rightmost button.

cancel button (text (page 123) or integer (page 110))
The name or number of the cancel button. See “Result” below. This may be the same as the default button.

Default Value:
None; there is no cancel button.

giving up after integer (page 110)
The number of seconds to wait before automatically dismissing the alert.

Default Value:
None; the dialog will wait until the user clicks a button.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

157

Commands Reference

Result

If the user clicks a button that was not specified as the cancel button, display alert returns a record that
identifies the button that was clicked—for example, {button returned: "O0K"}.If the command specifies
agiving up after value, the record will also contain a gave up:false item.

If the display alert command specifies a giving up after value, and the dialog is dismissed due to
timing out before the user clicks a button, the command returns a record indicating that no button was returned
and the command gave up: {button returned:"", gave up:true}

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an example of
how to handle such errors, see “try Statements” (page 262).

Examples

set alertResult to display alert "Insert generic warning here." -
buttons {"Cancel", "OK"} as warning -

default button "Cancel" cancel button "Cancel" giving up after 5

For an additional example, see the Examples section for the try (page 262) statement.

display dialog

Displays a dialog containing a message, one to three buttons, and optionally an icon and a field in which the
user can enter text.

Syntax
display dialog text required
default answer text optional
hidden answer boolean optional
buttons list optional
default button labelSpecifier optional
cancel button labelSpecifier optional
with title text optional
with icon resourceSpecifier optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

158

Commands Reference

with icon iconTypeSpecifier optional
with icon ﬁ[eSpeciﬁer optional
giving up after integer optional
Parameters

text

The dialog text, which is displayed in emphasized system font.

default answer text (page 123)
The initial contents of an editable text field. This edit field is not present unless this parameter is present;

to have the field present but blank, specify an empty string: default answer

Default Value:
None; there is no edit field.

hidden answer boolean (page 102)
If true, any text in the edit field is obscured as in a password dialog: each character is displayed as a bullet.

Default Value:
false: text in the edit field is shown in cleartext.

buttons list (page 112) (of text (page 123))
A list of up to three button names.

Default Value:
If you don't specify any buttons, by default, Cancel and OK buttons are shown, with the OK button
set as the default button.

If you specify any buttons, there is no default or cancel button unless you use the following
parameters to specify them.

default button (text (page 123)|integer (page 110))
The name or number of the default button. This button is highlighted, and will be pressed if the user
presses the Return or Enter key.

Default Value:
If there are no buttons specified using buttons, the OK button. Otherwise, there is no default
button.

cancel button (text (page 123) | integer (page 110))
The name or number of the cancel button. This button will be pressed if the user presses the Escape key

or Command-period.

Default Value:
If there are no buttons specified using buttons, the Cancel button. Otherwise, there is no cancel
button.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

159

Commands Reference

with title text (page 123)
The dialog window title.

Default Value:
None; no title is displayed.

with icon (text (page 123) | integer (page 110))
The resource name or ID of the icon to display.

with icon (stop | note | caution)
The type of icon to show. You may specify one of the following constants:

* stop (or 0): Shows a stop icon
e note (or 1): Shows the application icon
® caution (or 2): Shows a warning icon, badged with the application icon
with icon (alias (page 98) | file (page 110))
An alias or file specifier that specifies a . icns file.

giving up after integer (page 110)
The number of seconds to wait before automatically dismissing the dialog.

Default Value:
None; the dialog will wait until the user presses a button.

Result
A record containing the button clicked and text entered, if any. For example:

{text returned:"Cupertino", button returned:"0K"}
If the dialog does not allow text input, there is no text returned item in the returned record.

If the user clicks the specified cancel button, the command signals a “user canceled” error. For an example of
how to handle such errors, see “try Statements” (page 262).

If the display dialog command specifies a giving up after value, and the dialog is dismissed due to
timing out before the user clicks a button, it returns a record indicating that no button was returned and the
command gave up: {button returned:"", gave up:true}

Examples

The following example shows how to use many of the parameters to a display dialog command, how to
process possible returned values, and one way to handle a user cancelled error. The dialog displays two buttons
and prompts a user to enter a name, giving up if they do not make a response within fifteen seconds. It shows

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

160

Commands Reference

one way to handle the case where the user cancels the dialog, which results in AppleScript signaling an “error”
with the error number -128. The script uses additional display dialog commands to show the flow of logic
and indicate where you could add statements to handle particular outcomes.

set userCanceled to false
try
set dialogResult to display dialog -
"What is your name?" buttons {"Cancel", "OK"} -
default button "OK" cancel button "Cancel" -
giving up after 15 -
default answer (long user name of (system info))
on error number -128
set userCanceled to true

end try

if userCanceled then
—— statements to execute when user cancels
display dialog "User cancelled."

else if gave up of dialogResult then
—— statements to execute if dialog timed out without an answer
display dialog "User timed out."

else if button returned of dialogResult is "OK" then
set userName to text returned of dialogResult
— statements to process user name
display dialog "User name: " & userName

end if

end

The following example displays a dialog that asks for a password. It supplies a default answer of "wrong", and
specifies that the default answer, as well as any text entered by the user, is hidden (displayed as a series of
bullets). It gives the user up to three chances to enter a correct password.

set prompt to '"Please enter password:"
repeat 3 times
set dialogResult to display dialog prompt -
buttons {"Cancel", "OK"} default button 2 -

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

161

Commands Reference

default answer "wrong" with icon 1 with hidden answer
set thePassword to text returned of dialogResult
if thePassword = "magic" then

exit repeat

end if
end repeat
if thePassword = "magic" or thePassword = "admin" then

display dialog "User entered valid password."

end if

The password text is copied from the return value dialogResult. The script doesn't check for a user cancelled
error, so if the user cancels AppleScript stops execution of the script.

display notification

Posts a notification using the Notification Center, containing a title, subtitle, and explanation, and optionally
playing a sound.

Syntax
display notification text required
with title text optional
subtitle text optional
sound name text optional
Parameters

text (page 123)
The body text of the notification. At least one of this and the title must be specified.

with title text (page 123)
The title of the notification. At least one of this and the body text must be specified.

subtitle text (page 123)
The subtitle of the notification.

sound name text (page 123)
The name of a sound to play when the notification appears. This may be the base name of any sound
installed in Library/Sounds.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

162

Commands Reference

Result
None.

Examples
display notification "Encoding complete" subtitle "The encoded files are in the

folder " & folderName

Discussion
Exactly how the notification is presented is controlled by the “Notifications” preferences in System Preferences.
Users may opt to display a reduced form of notification, turn off the sound, or even not display them at all.

do shell script

Executes a shell script using the sh shell.

Syntax

do shell script text required
as class optional
administrator privileges boolean optional
user name text optional
password text optional
altering line endings boolean optional
Parameters

text (page 123)
The shell script to execute.

as class (page 104)
Specifies the desired type of the result. The raw bytes returned by the command will be interpreted as

the specified class.

Default Value:
«class utf8x»:UTF-8text.If thereisnoas parameter and the output is not valid UTF-8, the output
will be interpreted as text in the primary encoding.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

163

Commands Reference

administrator privileges boolean (page 102)
Execute the command as the administrator? Once a script is correctly authenticated, it will not ask for
authentication again for five minutes. The elevated privileges and the grace period do not extend to any
other scripts or to the rest of the system. For security reasons, you may not tell another application to do
shell script with administrator privileges. Putthe command outside of any tell block,
or putitinsidea tell me block.

Default Value:
false

user name text (page 123)
The name of an administrator account. You can avoid a password dialog by specifying a name in this
parameter and a password in the password parameter. If you specify a user name, you must also specify
a password.

password text (page 123)
An administrator password, typically used in conjunction with the administrator specified by the user
name parameter. If user name is omitted, it is assumed to be the current user.

altering line endings boolean (page 102)
Should the do shell script command change all line endings in the command output to Mac-style
and trim a trailing one? For example, the result of do shell script "echo foo; echo bar"is
"foo\rbar", not the "foo\nbar\n" that the shell script actually returned.

Default Value:
true

Result
The output of the shell script.

Signals an error if the shell script exits with a non-zero status. The error number will be the status, the error
message will be the contents of stderr.

Examples
do shell script "uptime"
Discussion

For additional documentation and examples of the do shell script command, see Technical Note TN2065,
do shell script in AppleScript.

get

Evaluates an object specifier and returns the result.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

164

http://developer.apple.com/technotes/tn2002/tn2065.html

Commands Reference

The command name get is typically optional—expressions that appear as statements or operands are
automatically evaluated as if they were preceded by get. However, get can be used to force early evaluation
of part of an object specifier.

Syntax
get specifier required
as class optional
Parameters
specifier

An object specifier to be evaluated. If the specifier refers to an application-defined object, the get
command is sent to that application. Technically, all values respond to get, but for all values other than
object specifiers, get is an identity operation: the result is the exact same value.

as class (page 104)
The desired class for the returned data. If the data is not of the desired type, AppleScript attempts to
coerce it to that type.

Default Value:
None; no coercion is performed.

Result
The value of the evaluated expression. See “Reference Forms” (page 212) for details on what the results of
evaluating various object specifiers are.

Examples
get can get properties or elements of AppleScript-defined objects, such as lists:

get item 1 of {"How", "are", "you?"} —-result: "How"

...or of application-defined objects:

tell application "Finder" to get name of home —-result: "myname"

As noted above, the get is generally optional. For example, these statements are equivalent to the above two:

item 1 of {"How", "are", "you?"} —-result: "How"

tell application "Finder" to name of home —--result: "myname"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

165

Commands Reference

However, an explicit get can be useful for forcing early evaluation of part of an object specifier. Consider:

tell application "Finder" to get word 1 of name of home

——Finder got an error: Can't get word 1 of name of folder "myname" of folder "Users"
of startup disk.

This fails because Finder does not know about elements of text, such as words. AppleScript does, however,
so the script has to make Finder get only the name of ... part:

tell application "Finder" to get word 1 of (get name of home)

——result: "myname"

The explicit get forces that part of the specifier to be evaluated; Finder returns a text result, from which
AppleScript can then get word 1.

For more information on specifiers, see “Object Specifiers” (page 30).

get eof

Returns the length of a file, in bytes.

Syntax

get eof fileSpecifier required

Parameters

(alias (page 98) | file (page 110) | file descriptor)
The file to obtain the length for, as an alias, a file specifier, or an integer (page 110) file descriptor. A file
descriptor must be obtained as the result of an earlier open for access (page 178) call.

Result
The logical size of the file, that is, the length of its contents in bytes.

Examples
This example obtains an alias to a desktop picture folder and uses get eof to obtain its length:

set desktopPicturesFolderPath to -
(path to desktop pictures folder as text) & "Flow 1.jpg" as alias

——result: alias "Leopard:Library:Desktop Pictures:Flow 1.jpg"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

166

Commands Reference

get eof desktopPicturesFolderPath ——result: 531486

get volume settings

Returns the sound output and input volume settings.

Syntax

get volume settings required

Result
A record containing the sound output and input volume settings. All the integer settings are between 0 (silent)
and 100 (full volume):

output volume (an integer (page 110))
The base output volume.

input volume (an integer)
The input volume.

alert volume (an integer)
The alert volume. 100 for this setting means “as loud as the output volume.”

output muted (a boolean (page 102))
Is the output muted? If true, this overrides the output and alert volumes.

Examples
set volSettings to get volume settings

—result: {output volume:43, input volume:35, alert volume:78, output muted:false}

info for

Return information for a file or folder.

Syntax
info for fileSpecifier required
size boolean optional
Parameters

(alias (page 98) | file (page 110))
An alias or file specifier for the file or folder.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

167

Commands Reference

size boolean (page 102)
Return the size of the file or folder? For a file, its “size” is its length in bytes; for a folder, it is the sum of
the sizes of all the files the folder contains.

Default Value:
true: Because getting the size of a folder requires getting the sizes of all the files inside it, size
true may take a long time for large folders such as /System. If you do not need the size, ask to
not get it using size false. Alternatively, target the Finder or System Events applications to ask
for the specific properties you want.

Result
A record containing information about the specified file or folder, with the following fields. Some fields are
only present for certain kinds of items:

name (a text (page 123) object)
The item’s full name, as it appears in the file system. This always includes the extension, if any. For example,
"OmniOutliner Professional.app".

displayed name (a text (page 123) object)
The item’s name as it appears in Finder. This may be different than the name if the extension is hidden
or if the item has a localized name. For example, "'OmniOutliner Professional".

short name (a text (page 123) object, applications only)
The application’s CFBund leName, which is the name displayed in the menu bar when the application is
active. This is often, but not always, the same as the displayed name. For example, "OmniOutliner
Pro".

name extension (a text (page 123) object)
The extension part of the item name. For example, the name extension of the file “foo. txt"is "txt".

bundle identifier (a text (page 123) object)
The package’s bundle identifier. If the package is an application, this is the application’s id.

type identifier (a text (page 123) object)
The item’s type, as a Uniform Type Identifier (UTI). This is the preferred form for identifying item types,
and may be used with choose file.

kind (a text (page 123) object)
The item’s type, as displayed in Finder. This may be localized, and should only be used for display purposes.

default application (analias (page 98) object)
The application that will open this item.

creation date (a date (page 106) object)
The date the item was created.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

168

Commands Reference

modification date (adate (page 106) object)
The date the item was last modified. Folder modification dates do not change when an item inside them
changes, though they do change when an item is added or removed.

file type (a text (page 123) object)
The item’s type, as a four-character code. This is the classic equivalent of the type identifier, but less
accurate and harder to interpret; use type identifier if possible.

file creator (a text (page 123) object)
The item’s four-character creator code. For applications, this is the classic equivalent of the bundle
identifier, and will work for referencing an application by id. For files, this can be used to infer the default
application, but not reliably; use default application if possible.

short version (a text (page 123) object)
The item’s short version string, as it appears in a Finder “Get Info” window. Any item may have this
attribute, but typically only applications do.

long version (a text (page 123) object)
The item’s long version string, as it appears in a Finder “Get Info” window. Any item may have this attribute,
but typically only applications do.

size (an integer (page 110))
The item’s size, in bytes. For more details, see the size parameter.

alias (aboolean (page 102))
Is the item an alias file?

folder (a boolean (page 102))
Is the item a folder? This is true for packages, such as application packages, as well as normal folders.

package folder (aboolean (page 102))
Is the item a package folder, such as an application? A package folder appears in Finder as if it is a file.

extension hidden (a boolean (page 102))
Is the item’s name extension hidden?

visible (a boolean (page 102))
Is the item visible? Typically, only special system files are invisible.

locked (a boolean (page 102))
Is the item locked?

busy status (aboolean (page 102))
Is the item currently in use?

If true, the item is reliably busy. If false, the item may still be busy, because this status may not be
supported by some applications or file systems.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

169

Commands Reference

folder window (rectangle, folders only)
The folder’s window’s bounding rectangle, as list of four integers: {top, left, bottom, right}.

Examples

set downloadsFolder to path to downloads folder
——result: alias "HD:Users:me:Downloads:"
info for downloadsFolder

——result: {name:"Downloads", folder:true, alias:false, ...}

Special Considerations

Because info for returns so much information, it can be slow, and because it only works on one file at a
time, it can be difficult to use. The recommended technique is to use System Events or Finder to ask for the
particular properties you want.

launch

Launches an application, if it is not already running, but does not send it a run command.

If an application is already running, sending it a Launch command has no effect. That allows you to open an
application without performing its usual startup procedures, such as opening a new window or, in the case of
a script application, running its script. For example, you can use the Taunch command when you don’t want

an application to open and close visibly. This is less useful in AppleScript 2.0, which launches applications as
hidden by default (even with the run (page 193) command).

See the application (page 99) class reference for information on how to use an application object’s is

running property to determine if it is running without having to launch it.

Syntax

launch app[ication required

Parameters
application

The application to launch.

Result
None.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

170

Commands Reference

Examples

launch application "TextEdit"

tell application "TextEdit" to launch

Discussion
The launch command does not launch applications on remote machines. For examples of other ways to
specify an application, see the application (page 99) class.

Many applications also support the reopen command, which reactivates a running application or launches it
if it isn't running. If the application is already running, this command has the same effect as double-clicking
the application icon in the Finder. Each application determines how it will implement the reopen
command—some may perform their usual startup procedures, such as opening a new window, while others
perform no additional operations.

list disks

Returns the names of the currently mounted volumes.

Important: This command is deprecated; use tell application "System Events" to get the
name of every disk.

Syntax

list disks required

Result
A list (page 112) of text objects, one for each currently mounted volume.

list folder

Returns the names of the items in a specified folder.

Important: This command is deprecated; use tell application "System Events" to get the
name of every disk item of ...

Syntax
list folder fileSpecifier required
invisibles boolean optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

171

Commands Reference

Parameters

(alias (page 98) | file (page 110))
Specifies the folder to list.

invisibles boolean (page 102)
Show invisible files and folders?

Default Value:
true

Result
A list (page 112) of text (page 123) objects, one for each item in the specified folder.

load script

Returns a script object loaded from a specified file.

Syntax

load script fileSpecifier required

Parameters

(alias (page 98) | file (page 110))
An alias or file specifier that specifies a script object. The file must be a compiled script (with
extension scpt) or script bundle (with extension scptd).

Result
The script object. You can get this object’s properties or call its handlers as if it were a local script object.

Examples
For examples, see “Saving and Loading Libraries of Handlers” (page ?) in “About Handlers” (page 83).

localized string

Returns the localized text for the specified key.

Syntax
localized string text required
from table text optional
in bundle fileSpecifier optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

172

Commands Reference

Parameters

text (page 123)
The key for which to obtain the localized text.

from table text (page 123)
The name of the strings file excluding the . strings suffix.

Default Value:
"Localizable"

in bundle (alias (page 98) | file (page 110))
An alias or file specifier that specifies the strings file.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the current
application.

Result
A text (page 123) object containing the localized text, or the original key if there is no localized text for that
key.

Examples
In order for localized string to be useful, you must create localized string data for it to use:

1. Save your script as an application bundle or script bundle.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

173

Commands Reference

2. Create lproj folders in the Resources directory of the bundle for each localization: for example,
English.lproj, French. lproj. Create files named Localized.strings in each one. When you are
done, the folder structure should look like this:

Figure 7-1 Bundle structure with localized string data

8 00 1 Apple_script
Nama
¥ (] Contents
@ Info.plist
>] MacOS
" PKGInfo
¥ (] Resources
@ applet.icns
[applet.rsrc
D description.rtfd
¥ [English.lproj
D Localizable.strings
¥ [French.lproj
" Localizable.strings
> [Scripts

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

174

Commands Reference

3. Addkey/value pairs to each Localized.strings file. Each pairis a line of text "'key" = "value" ;, for example:
Figure 7-2 Key/value pair for localized string data
® 00 localizable.strings =

"hello" = "bonjour";

Now localized string will return the appropriate values, as defined in your files. For example, when
running in French:

localized string "hello" --result: "bonjour"

log

In Script Editor, displays a value in the Event Log History window or in the Event Log pane of a script window.

Syntax
log required
value optional
Parameters
value

The value to display. Expressions are evaluated but object specifiers are not resolved.
The displayed value is enclosed in block comment characters—for example, (*window 1x).

If you do not specify a value, Log will display just the comment characters: (*x).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

175

Commands Reference

Result
None.

Examples
The following shows a simple use of logging:

set area to 7 * 43 as square feet

log area —— result (in Event Log pane): (*square feet 301.0x%)

Log statements can be useful for tracking a script’s progress. For an example that shows how to log statements
in a repeat loop, see “Logging” (page 52).

mount volume

Mounts the specified network volume.

Syntax
mount volume text required
on server text (see parameter description)
in AppleTalk zone text (see parameter description)
as user name text optional
with password text optional

Parameters

text (page 123)
The name or URL (for example, afp://server/volume/) of the volume to mount.

on server text (page 123)
The server on which the volume resides; omit if URL path provided in direct parameter.

in AppleTalk zone text (page 123)
The AppleTalk zone in which the server resides; omit if URL path provided.

as user name text (page 123)
The user name with which to log in to the server; omit for guest access.

with password text (page 123)
The password for the user name; omit for guest access.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

176

Commands Reference

Result
None.

Examples

mount volume "afp://myserver.com/" —— guest access
mount volume "http://idisk.mac.com/myname/Public"
mount volume "http://idisk.mac.com/somebody" -

as user name "myname" with password "mypassword"

Discussion

The mount volume command can connect to any file server that is supported by the FinderllloGnect To...O
command, including Windows (smb), Samba, and FTP servers. On some kinds of servers, the as user name
and with password parameters may not bypass the login dialog, but encoding the name and password in
the URL (for example, smb: //myname: passwd@server.domain.com/sharename) will mount it silently.

offset

Finds one piece of text inside another.

Syntax
offset required
of text required
in text required
Parameters

of text (page 123)
The source text to find the position of.

in text (page 123)

The target text to search in.

Result
An integer (page 110) value indicating the position, in characters, of the source text in the target, or 0 if not

found.
Examples

set myString to "Yours, mine, and ours"

offset of "yours" in myString -—-result: 1, because case is ignored by default

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

177

Commands Reference

offset of "mine" in myString --result: 8
offset of "theirs" in myString --result: 0@, because "theirs" doesn't appear
considering case

offset of "yours" in myString —— result: @, because case is now considered

end considering

Discussion

offset compares text as the equals operator does, including considering and ignoring conditions. The
values returned are counted the same way character elements of text are counted—for example, offset
of "c" in "école" is always 2, regardless of whether "école" is in Normalization Form C or D. The result
of matching part of a character cluster is undefined.

open for access

Opens a file for reading and writing.

Syntax
open for access ﬁ/eSpecfﬁer required
write permission boolean optional
Parameters

(alias (page 98) | file (page 110))
An alias or file specifier that specifies the file to open. You can only use an alias if the file exists.

write permission boolean (page 102)
Should writing to the file be allowed?

Default Value:
false:write and set eof commands on this file will fail with an error.

Result
Afile descriptor, as an integer (page 110). This file descriptor may be used with any of the other file commands:
read (page 188), write (page 209), get eof (page 166), set eof (page 199), and close access (page 152).

Examples
The following example opens a file named "NewFile" in the specified location path to desktop, but does
not ask for write access:

set theFile to (path to desktop as text) & "NewFile"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

178

Commands Reference

set referenceNumber to open for access theFile

To open the file with write access, you would substitute the following line:

set referenceNumber to open for access theFile with write permission

Discussion

Opening a file using open for access is not the same as opening a file using Finder. It is “open” only in the
sense that AppleScript has access to read (and optionally write) its contents; it does not appear in one of the
target application’s windows, and it does not even have to be one of the target application’s files. open for
access and the associated file commands (read, write,get eof,set eof)are typically used with text files.
They can also read and write arbitrary binary data, but this is not recommended unless you create the file
yourself or have detailed knowledge of the file format.

Calling open for access on a file returns an integer, termed a file descriptor, which represents an open
communication channel to the file's data. This file descriptor remains open until the script calls close access
on it (or on the same file). Each file descriptor maintains a file pointer, which marks the current position within
the file and is initially set to the beginning of the file. read and write commands begin reading or writing at
the file pointer, unless instructed otherwise using a from or starting at parameter, and advance the file

pointer by the number of bytes read or written, so the next operation will begin where the previous one left
off.

A single file may be opened more than once, and therefore have several different file descriptors. Each file
descriptor maintains its own file pointer, and each must be closed separately. If you open more than one
channel at once with write permission, behavior is unspecified.

It is not strictly necessary to use open for access—all the other file commands can accept an alias; if the
file is not open, they will open it, do the operation, and then close it. Explicitly opening and closing the file
does have two potential advantages, however.

One is performance: if you are performing a number of operations on the same file, opening and closing it
repeatedly could become expensive. It is cheaper to explicitly open the file, do the work, and then explicitly
close it.

Two is ease of sequential read and write operations: because the file pointer tracks the progress through the
file, reading or writing several pieces of data from the same file is a simple matter. Doing the same thing without
using the file pointer requires calculating the data size yourself, which is not even possible in some cases.

open location

Opens a URL with the appropriate program.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

179

Commands Reference

Syntax
open location text required
error reporting boolean optional
Parameters

text (page 123)
The URL to open.

error reporting boolean (page 102)
This parameter exists only for historical reasons; it is no longer supported.

Result
None.

Examples
This example opens an Apple web page:

open location "http://www.apple.com"

path to (application)

Returns the location of the specified application.

Syntax
path to required
application optional
as class optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

180

Commands Reference

Parameters
application
The application to locate. See the application (page 99) class reference for possible ways to specify an
application. You may also use one of the following identifiers:
current application
The application executing the script, such as Script Editor.
frontmost application
The frontmost application.
me

The script itself. For script applications, this is the same as current application, but for script
documents, it is the location of the document.

Note: Some older applications may treat me identically to current application.

it
The application of the current target.

Default Value:

it

as class (page 104) (alias (page 98) | text (page 123))

The class of the returned location. If specified, must be one of alias or text.
Default Value:

alias (page 98)

Result
The location of the specified application, as either an alias or a text object containing the path.

Examples

path to application "TextEdit"
—-result: alias "Leopard:Applications:TextEdit.app:"

path to --result: alias "Leopard:Applications:AppleScript:Script Editor.app:"

path to me --result: same as above
path to it --result: same as above
path to frontmost application --result: same as above

path to current application

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

181

Commands Reference

—result: same, but could be different for a script application

path to (folder)

Returns the location of the specified special folder.

Syntax

path to
from
as

folder creation

folder constant

domain constant

class

boolean

required
optional
optional

optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

182

Commands Reference

Parameters

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

183

Commands Reference

folder constant
The special folder for which to return the path. You may specify one of the following folders:

application support
applications folder
desktop

desktop pictures folder
documents folder
downloads folder
favorites folder
Folder Action scripts
fonts

help

home folder
internet plugins
keychain folder
library folder
modem scripts
movies folder

music folder
pictures folder
preferences

printer descriptions
public folder
scripting additions
scripts folder
services folder
shared documents
shared libraries
sites folder
startup disk
startup items
system folder
system preferences

temporary items

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

184

Commands Reference

trash
users folder
utilities folder

workflows folder

The following folders are also defined, but are only meaningful when used with from Classic domain:

apple menu

control panels
control strip modules
extensions

launcher items folder
printer drivers
printmonitor

shutdown folder
speakable items
stationery

voices

from domain constant
The domain in which to look for the specified folder. You may specify one of the following domains:
system domain
A folder in /System.
local domain
Afolderin /Library.
network domain
A folder in /Network.
user domain
A folder in ~, the user’s home folder.
Classic domain
A folder in the Classic Mac OS system folder. Only meaningful on systems that support Classic.

Default Value:
The default domain for the specified folder. This varies depending on the folder.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

185

Commands Reference

as class (page 104) (alias (page 98) | text (page 123))
The class of the returned location.

Default Value:
alias (page 98)

folder creation boolean
Create the folder if it doesn’t exist? Your script may not have permission to create the folder (for example,
asking to create something in the system domain), so your script should be prepared for that error.

Default Value:
true

Result
The location of the specified folder, as either an alias or a text object containing the path.

Examples

path to desktop ——result: alias "Leopard:Users:johndoe:Desktop:"

path to desktop as string ——result: "Leopard:Users:johndoe:Desktop:"

path to resource

Returns the location of the specified resource.

Syntax
path to resource text required
in bundle fileSpecifier optional
in directory text optional
Parameters
text

The name of the requested resource.

in bundle (alias (page 98) | file (page 110))
An alias or file specifier that specifies the bundle containing the resource.

Default Value:
The current script bundle for a document-based script (a scptd bundle); otherwise, the current
application.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

186

Commands Reference

in directory text (page 123)
The name of a subdirectory in the bundle’s Resources directory.

Result
The location of the specified resource, as an alias (page 98).

Examples
The following example shows how you can get the path to a . icns file—in this case, in the Finder application.

tell application "Finder"
set gearIconPath to path to resource "Gear.icns"
end

——result: alias
"HD:System:Library:CoreServices:Finder.app:Contents:Resources:Gear.icns"

random number

Returns a random number.

Syntax
random number required
from number optional
to number optional
with seed number optional
Parameters

from number (page 115)
The lowest number to return. Can be negative.

Default Value:
0.0

to number (page 115)
The highest number to return. Can be negative.

Default Value:
1.0

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

187

Commands Reference

with seed integer (page 110)
An initial seed for the random number generator. Once called with any particular seed value, random

number will always generate the same sequence of numbers. This can be useful when testing randomized
algorithms: you can force it to behave the same way every time.

Result

A number between the fromand to limits, including the limit values. Depending on the limit values, the result
may be an integer or a real. If at least one limit is specified, and all specified limits are integers, the result is an
integer. Otherwise, the result is a real, and may have a fractional part.

Examples

random number —-result: 0.639215561057

random number from 1 to 10 --result: 8

Discussion
Random numbers are, by definition, random, which means that you may get the same number twice (or even
more) in a row, especially if the range of possible numbers is small.

The numbers generated are only pseudo-random, and are not considered cryptographically secure.

If you need to select one of a set of objects in a relationship, use some object rather than object (random
number from 1 to count objects).See the “Arbitrary” (page 212) reference form for more details.

read

Reads data from a file.

Syntax
read fileSpecifier required
from integer optional
for integer optional
to integer optional
before text optional
until text optional
using delimiters text optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

188

Commands Reference

as class optional

Parameters

(alias (page 98) | file (page 110) | file descriptor)
The file to read from, as an alias, a file specifier, or an integer (page 110) file descriptor. A file descriptor
must be obtained as the result of an earlier open for access (page 178) call.

from integer (page 110)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte of the file,
2 the second, and so on. Negative integers count from the end of the file, so -1 is the last byte, -2 the
second-to-last, and so on.

Default Value:
The current file pointer (see open for access (page 178)) if the file is open, or the beginning of the
file if not.

for integer (page 110)
The number of bytes to read.

Default Value:
Read until the end of the file.

to (integer (page 110) | eof)
Stop reading at this byte position in the file; use eof to indicate the last byte. The position is 1-based,
like the from parameter.

before text (page 123)
A single character; read up to the next occurrence of that character. The before character is also read,
but is not part of the result, so the next read will start just after it.

until text (page 123)
A single character; read up to and including the next occurrence of that character.

using delimiter text (page 123)
A delimiter, such as a tab or return character, used to separate the data read into a list of text objects.
The resulting items consist of the text between occurrences of the delimiter text. The delimiter is considered
a separator, so a leading or trailing delimiter will produce an empty string on the other side. For example,
the result of reading "axbxcx" using a delimiter of 'x" would be {"a", "b", "c", ""}.

Default Value:
None; read returns a single item.

using delimiters list (page 112) of text (page 123)
As using delimiter above, but all of the strings in the list count as delimiters.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

189

Commands Reference

as class (page 104)
Interpret the raw bytes read as this class. The most common ones control the use of three different text

encodings:

text orstring

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese for Japanese,
and so on.)

Unicode text
UTF-16.
«class utf8»

UTF-8. (See “Double Angle Brackets” (page 305) for information on chevron or “raw” syntax.)

Any other class is possible, for example date or 1ist, but is typically only useful if the data was written
using a write statement specifying the same value for the as parameter.

Default Value:
text

Result
The data read from the file. If the file is open, the file pointer is advanced by the number of bytes read, so the
next read command will start where the previous one left off.

Examples

The following example opens a file for read access, reads up to (and including) the first occurrence of . ",
closes the file, and displays the text it read. (See the Examples section for the write (page 209) command for
how to create a similar file for reading.)

set fp to open for access file "Leopard:Users:myUser:NewFile"
set myText to read fp until "."
close access fp

display dialog myText

To read all the text in the file, replace set myText to read fp until "." with set myText to read
fp.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

190

Commands Reference

Discussion

At most one of to, for, before,and untilis allowed. Use of before, until, orusing delimiter(s) will
interpret the file first as text and then coerce the text to whatever is specified in the as parameter. Otherwise,
it is treated as binary data (which may be interpreted as text if so specified.)

read cannot automatically detect the encoding used for a text file. If a file is not in the primary encoding, you
must supply an appropriate as parameter.

When reading binary data, read always uses big-endian byte order. This is only a concern if you are reading
binary files produced by other applications.

round

Rounds a number to an integer.

Syntax
round real required
rounding roundingDirection optional
Parameters

real (page 116)
The number to round.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

191

Commands Reference

rounding roundingDirection
The direction to round. You may specify one of the following rounding directions:

up
Rounds to the next largest integer. This is the same as the math “ceiling” function.
down
Rounds down to the next smallest integer. This is the same as the math “floor” function.
toward zero
Rounds toward zero, discarding any fractional part. Also known as truncation.
to nearest

Rounds to the nearest integer; .5 cases are rounded to the nearest even integer. For example, 1.5
rounds to 2, 0.5 rounds to 0. Also known as “unbiased rounding” or “bankers’ rounding.” See
Discussion for details.

as taught in school

Rounds to the nearest integer; .5 cases are rounded away from zero. This matches the rules
commonly taught in elementary mathematics classes.

Default Value:
to nearest

Result

The rounded value, as an integer (page 110) if it is within the allowable range (+2%°), or as a real (page 116)
if not.

Examples
Rounding up or down is not the same as rounding away from or toward zero, though it may appear so for
positive numbers. For example:

round 1.1 rounding down ——result: 1

round -1.1 rounding down —-result: -2

To round to the nearest multiple of something other than 1, divide by that number first, round, and then
multiply. For example, to round a number to the nearest 0.01:

set x to 5.1234
set quantum to 0.01

(round x/quantum) * quantum —-result: 5.12

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

192

Commands Reference

Discussion
The definition of to nearest is more accurate than as taught in school, but may be surprising if you
have not seen it before. For example:

round 1.5 ——result: 2

round 0.5 ——result: 0

Rounding 1.5 to 2 should come as no surprise, but as taught in school would have rounded 0.5 up to 1.
The problem is that when dealing with large data sets or with many subsequent rounding operations, always
rounding up introduces a slight upward skew in the results. The round-to-even rule used by to nearest
tends to reduce the total rounding error, because on average an equal portion of numbers will round down
as will round up.

run

Executes the run handler of the specified target.

To run an application, it must be on a local or mounted volume. If the application is already running, the effect
of the run command depends on the application. Some applications are not affected; others repeat their
startup procedures each time they receive a run command.

The run command launches an application as hidden; use activate (page 136) to bring the application to the
front.

For a script object, the run command causes either the explicit or the implicit run handler, if any, to be
executed. For related information, see “run Handlers” (page 92).

Syntax

run runTarget optional

Parameters

runTarget script
A script (page 121) or application (page 99) object.

Default Value:
it (the current target)

Result
The result, if any, returned by the specified object’s run handler.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

193

Commands Reference

Examples

run application "TextEdit"
tell application "TextEdit" to run

run myScript —--where myScript is a script object

For information about using the run command with script objects, see “Sending Commands to Script
Objects” (page 71).

Discussion

To specify an application to run, you can supply a string with only the application name, as shown in the
Examples section. Or you can specify a location more precisely, using one of the forms described in “Aliases
and Files” (page 47). For examples of other ways to specify an application, see the application (page 99)
class.

It is not necessary to explicitly tell an application to run before sending it other commands; AppleScript will
do that automatically. To launch an application without invoking its usual startup behavior, use the launch (page
170) command. For further details, see “Calling a Script Application From a Script” (page 96).

run script

Runs a specified script or script file.

See also store script (page 202).

Syntax
run script scriptTextOrFileSpecifier required
with parameters listOfParameters optional
in text optional
Parameters

(text (page 123) | alias (page 98) | file (page 110))
The script text, or an alias or file specifier that specifies the script file to run.

with parameters list (page 112) of anything
A list of parameter values to be passed to the script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

194

Commands Reference

in text (page 123)
The scripting component to use.

Default Value:
"AppleScript"

Result
The result of the script’s run handler.

Examples

The following script targets the application Finder, escaping the double quotes around the application name
with the backslash character (for more information on using the backslash, see the Special String Characters
section in the text (page 123) class description):

run script "get name of front window of app \"Finder\"" ——result: a window name

This example executes a script stored on disk:

set scriptAlias to "Leopard:Users:myUser:Documents:savedScript.scptd:" as alias

run script scriptAlias —-result: script is executed

say

Speaks the specified text.

Syntax
say text required
displaying text optional
using text optional
waiting until completion boolean optional
saving to fileSpecifier optional
Parameters

text (page 123)
The text to speak.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

195

Commands Reference

displaying text (page 123)
The text to display in the feedback window, if different from the spoken text. This parameter is ignored
unless Speech Recognition is turned on (in System Preferences).

using text (page 123)
The voice to speak with—for example: "'Zarvox".

You can use any of the voices from the System Voice pop-up on the Text to Speech tab in the Speech
preferences pane.

Default Value:
The current System Voice (set in the Speech panel in System Preferences.

waiting until completion boolean (page 102)
Should the command wait for speech to complete before returning? This parameter is ignored unless
Speech Recognition is turned on (in System Preferences).

Default Value:
true

saving to (alias (page 98) | file (page 110))
An alias or file specifier to an AIFF file (existing or not) to contain the sound output. You can only
use an alias specifier if the file exists. If this parameter is specified, the sound is not played audibly, only
saved to the file.

Default Value:
None; the text is spoken out loud, and no file is saved.

Result
None.

Examples

say "You are not listening to me!" using "Bubbles" —— result: spoken in Bubbles

The following example saves the spoken text into a sound file:

set soundFile to choose file name —- specify name ending in ".aiff"
——result: a file URL
say "I love oatmeal." using "Victoria" saving to soundFile

——result: saved to specified sound file

scripting components

Returns a list of the names of all currently available scripting components, such as the AppleScript component.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

196

Commands Reference

Syntax
scripting components required

Result
A list (page 112) of text (page 123) items, one for each installed scripting component.

Examples

scripting components ——result: {"AppleScript"}

Discussion

A scripting component is a software component, such as AppleScript, that conforms to the Open Scripting
Architecture (OSA) interface. The OSA provides an abstract interface for applications to compile, execute, and
manipulate scripts without needing to know the details of the particular scripting language. Each scripting
language corresponds to a single scripting component.

set

Assigns one or more values to one or more variables.

Syntax
set variablePattern required
to expression optional
Parameters
variablePattern

The name of the variable or pattern of variables in which to store the value or pattern of values. Patterns
can be lists or records.

to expression
The expression whose value is to be set. It can evaluate to any type of object or value.

Result
The value assigned.

Examples
set may be used to create new variables:

set myWeight to 125

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

197

Commands Reference

...assign new values to existing variables:

set myWeight to myWeight + 23

..change properties or elements of objects, such as lists:

set intList to {1, 2, 3}
set item 3 of intList to 42

...or application-defined objects:

tell application "Finder" to set name of startup disk to "Happy Fun Ball"

As mentioned in the Discussion, setting one variable to another makes both variables refer to the exact same
object. If the object is mutable, that is, it has writable properties or elements, changes to the object will appear
in both variables:

set alpha to {1, 2, {"a", "b"}}

set beta to alpha

set item 2 of item 3 of alpha to "change" --change the original variable
set item 1 of beta to 42 —--change a different item in the new variable
{alpha, beta}

—result: {{42, 2, {"a", "change"}}, {42, 2, {"a", "change"}}}

Both variables show the same changes, because they both refer to the same object. Compare this with the
similar example in copy (page 153). Assigning a new object to a variable is not the same thing as changing the
object itself, and does not affect any other variables that refer to the same object. For example:

set alpha to {1, 2, 3}
set beta to alpha —-result: beta refers to the same object as alpha
set alpha to {4, 5, 6}

——result: assigns a new object to alpha; this does not affect beta.
{alpha, beta}
—result: {{4, 5, 6}, {1, 2, 3}}

set can assign several variables at once using a pattern, which may be a list or a record. For example:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

198

Commands Reference

tell application "Finder" to set {x, y} to position of front window

Since position of front window evaluates to a list of two integers, this sets x to the first item in the list
and y to the second item.

You can think of pattern assignment as shorthand for a series of simple assignments, but that is not quite
accurate, because the assignments are effectively simultaneous. That means that you can use pattern assignment
to exchange two variables:

set {x, y} to {1, 2} ——now x is 1, and y is 2.

set {x, y} to {y, x} ——now x is 2, and y is 1.

To accomplish the second statement using only simple assignments, you would need a temporary third variable.

For more information on using the set command, including a more complex pattern example, see “Declaring
Variables with the set Command” (page 57).

Discussion

Using the set command to assign a value to a variable causes the variable to refer to the original value. In a
sense, it creates a new name for the same object. If multiple variables refer to a mutable object (that is, one
with writable properties or elements, such as a list or script object), changes to the object are observable
through any of the variables. If you want a separate copy, use the copy (page 153) command. This sharing only
applies to values in AppleScript itself; it does not apply to values in other applications. Changing the object a
variable refers to is not the same as altering the object itself, and does not affect other variables that refer to
the same object.

set eof

Sets the length of a file, in bytes.

Syntax
set eof fileSpecifier required
to integer required
Parameters

(alias (page 98) | file (page 110) | file descriptor)
The file to set the length of, as an alias, a file specifier, or as an integer file descriptor, which must be
obtained as the result of an earlier open for access (page 178) call.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

199

Commands Reference

to integer (page 110)
The new length of the file, in bytes. If the new length is shorter than the existing length of the file, any
data beyond that position is lost. If the new length is longer, the contents of the new bytes are unspecified.

Result
None.

Signals a “write permission” error if the file was opened using open for access without write permission.

Examples
If you want to completely replace the contents of an existing file, the first step must be to change its length
to zero:

set theFile to choose file with prompt "Choose a file to clobber:"

set eof theFile to 0

set the clipboard to

Places data on the clipboard.

Syntax

set the clipboard to anything required

Parameters

anything
The data (of any type) to place on the clipboard.

Result
None.

Examples
The following script places text on the clipboard, then retrieves the text in TextEdit with a the clipboard (page
208) command:

set the clipboard to "Important new text."
tell application "TextEdit"
activate --make sure TextEdit is running
set clipText to the clipboard --result: "Important new text."

——perform operations with retrieved text

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

200

Commands Reference

end tell

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply get the
data from the first application into a variable and set the appropriate data in the second application.

set volume

Sets the sound output, input, and alert volumes.

Syntax
set volume required
number optional
output volume integer optional
input volume integer optional
alert volume integer optional
output muted boolean optional
Parameters

number (page 115)
The sound output volume, a real number from 0 to 7.

Important: This parameter is deprecated; if specified, all other parameters will be ignored.

output volume integer (page 110)
The sound output volume, an integer from 0 to 100.

Default Value:
None; the output volume is not changed.

input volume integer (page 110)
The sound input volume, an integer from 0 to 100.

Default Value:
None; the input volume is not changed.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

201

Commands Reference

alert volume integer (page 110)
The alert input volume, an integer from 0 to 100.

Default Value:
None; the alert volume is not changed.

output muted boolean (page 102)
Should the sound output be muted?

Default Value:
None; the output muting is not changed.

Result
None.

Examples
The following example saves the current volume settings, before increasing the output volume, saying some
text, and restoring the original value:

set savedSettings to get volume settings

—— {output volume:32, input volume:70@, alert volume:78, output muted:false}
set volume output volume 90

say "This is pretty loud."

set volume output volume (output volume of savedSettings)

delay 1

say "That's better."

store script

Stores a script object into a file.

See also run script (page 194).

Syntax
store script script required
in fileSpecifier optional
replacing replacingConstant optional

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

202

Commands Reference

Parameters

script
The script object to store.

in (alias (page 98) | file (page 110))
An alias or file specifier that specifies the file to store the script object in.

Default Value:
None; a standard Save As dialog will be presented to allow the user to choose where to save the
script object.

replacing replacingConstant
Allow overwriting an existing file? You may specify one of the following constants:

yes
Overwrite without asking.
no
Never overwrite; signal an error if the file exists.
ask
Present a dialog asking the user what to do; the options are Replace (overwrite the file), Cancel
(signal a “user canceled” error), or Save As (save to a different location).
Default Value:
ask
Result
None.
Examples

This example stores a script on disk, using the Save As dialog to specify a location on the desktop and the
name storedScript. It then creates an alias to the stored script and runs it with run script:

script test
display dialog "Test"

end script

store script test ——specify "Leopard:Users:myUser:Desktop:storedScript"

set localScript to alias "Leopard:Users:myUser:Desktop:storedScript" run script
localScript ——result: displays dialog "Test"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

203

Commands Reference

The store scriptcommand stores only the contents of the script—in this case, the one statement, display
dialog "Test".It does not store the beginning and ending statements of the script definition.

summarize

Summarizes the specified text or text file.

Syntax
summarize textSpecifier required
in integer optional
Parameters
textSpecifier

The text (page 123), or an alias (page 98) to a text file, to summarize.

in integer (page 110)
The number of sentences desired in the summary.

Default Value:
1

Result
A text (page 123) object containing a summarized version of the text or file.

Examples
This example summarizes Lincoln’s famous Gettysburg Address down to one sentence—a tough job even for
AppleScript:

set niceSpeech to "Four score and seven years ago our fathers brought forth on
this continent a new nation, conceived in Liberty, and dedicated to the proposition
that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation,
so conceived and so dedicated, can long endure. We are met on a great battle-field
of that war. We have come to dedicate a portion of that field, as a final resting
place for those who here gave their lives that that nation might live. It is

altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate—-we can not consecrate—we can not
hallow—this ground. The brave men, living and dead, who struggled here, have
consecrated it, far above our poor power to add or detract. The world will little
note, nor long remember what we say here, but it can never forget what they did
here. It is for us the living, rather, to be dedicated here to the unfinished work
which they who fought here have thus far so nobly advanced. It is rather for us
to be here dedicated to the great task remaining before us—that from these honored

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

204

Commands Reference

dead we take increased devotion to that cause for which they gave the last full
measure of devotion—that we here highly resolve that these dead shall not have
died in vain—that this nation, under God, shall have a new birth of freedom-and
that government of the people, by the people, for the people, shall not perish
from the earth."

set greatSummary to summarize niceSpeech in 1

display dialog greatSummary —-result: displays one inspiring sentence

system attribute

Get environment variables or attributes of this computer.

Syntax

system attribute attribute optional

Parameters

attribute
The attribute to test: either a Gestalt value or a shell environment variable name. Gestalt values are
described in Gestalt Manager Reference.

Default Value:
If the attribute is omitted, system attribute will returnalist of the names of all currently defined
environment variables.

has integer (page 110)
For Gestalt values, an integer mask that is bitwise-ANDed with the Gestalt response. If the result is non-zero,
system attribute returns true, otherwise false.

For environment variables, this parameter is ignored.

Default Value:
None; system attribute returns the original Gestalt response code.

Result
If the attribute specified is a Gestalt selector, either the Gestalt response code or true or false depending
on the has parameter.

If the attribute specified is an environment variable, the value of that variable, or an empty string (") if it is
not defined.

If no attribute is supplied, a list of all defined environment variables.

Examples
To get the current shell:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

205

Commands Reference

system attribute "SHELL" —-result: "/bin/bash" (for example)

To get a list of all defined environment variables:

system attribute
(* result: (for example)

{"PATH", "TMPDIR", "SHELL", "HOME", "USER", "LOGNAME", "DISPLAY", "SSH_AUTH_SOCK",
"Apple_PubSub_Socket_Render", "__ CF_USER_TEXT_ENCODING", "SECURITYSESSIONID",
""COMMAND_MODE"}

*)

system info

Gets information about the system.

Syntax

system info required

Result
A record containing various information about the system and the current user. This record contains the
following fields:

AppleScript version (a text (page 123) object)
The version number of AppleScript, for example, "'2.0". This can be useful for testing for the existence
of AppleScript features. When comparing version numbers, use considering numeric strings to
make them compare in numeric order, since standard lexicographic ordering would consider "'1.9" to
come after "1.10".

AppleScript Studio version (a text (page 123) object)
The version number of AppleScript Studio, for example, "1.5".

Note: AppleScript Studio is deprecated in OS X v10.6.

system version (a text (page 123) object)
The version number of OS X, for example, "10.5.1".

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

206

Commands Reference

short user name (a text (page 123) object)
The current user’s short name, for example, ""hoser". This is set in the Advanced Options panel in the
Accounts preference pane, or in the “Short Name” field when creating the account. This is also available
from System Events using name of current user.

long user name (a text (page 123) object)
The current user’s long name, for example, ""Random J. Hoser". This is the “User Name” field in the
Accounts preference pane, or in the “Name” field when creating the account. This is also available from
System Events using full name of current user.

user ID (an integer (page 110))
The current user’s user ID. This is set in the Advanced Options panel in the Accounts preference pane.

user locale (a text (page 123) object)
The current user’s locale code, for example "en_US".

home directory (analias (page 98) object)
The location of the current user’s home folder. This is also available from Finder’s home property, or
System Events’ home folder property.

boot volume (a text (page 123) object)
The name of the boot volume, for example, "Macintosh HD".Thisis also available from Finder or System
Events using name of startup disk.

computer name (a text (page 123) object)
The computer’s name, for example "mymac". This is the “Computer Name” field in the Sharing preference
pane.

host name (a text (page 123) object)
The computer’s DNS name, for example "mymac. local".

IPv4 address (a text (page 123) object)
The computer’s IPv4 address, for example "192.201.168.13".

primary Ethernet address (a text (page 123) object)
The MAC address of the primary Ethernet interface, for example "'00:1c:63:91:4e:db".

CPU type (a text (page 123) object)
The CPU type, for example "Intel 80486".

CPU speed (an integer (page 110))
The clock speed of the CPU in MHz, for example 2400.

physical memory (an integer (page 110))
The amount of physical RAM installed in the computer, in megabytes (MB), for example 2048.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

207

Commands Reference

Examples

system info —-result: long record of information

the clipboard

Returns the contents of the clipboard.

Syntax
the clipboard required
as class optional
Parameters

as class (page 104)
The type of data desired. the clipboard will attempt to find that “flavor” of data on the clipboard; if
it is not found, it will attempt to coerce whatever flavor is there.

Result
The data from the clipboard, which can be of any type.

Examples
The following script places text on the clipboard, and then appends the clipboard contents to the frontmost
TextEdit document:

set the clipboard to "Add this sentence at the end."
tell application "TextEdit"
activate --make sure TextEdit is running
make new paragraph at end of document 1 with data (return & the clipboard)

end tell

Discussion
It is not necessary to use the clipboard to move data between scriptable applications. You can simply get the
data from the first application into a variable and set the appropriate data in the second application.

time to GMT

Returns the difference between local time and GMT (Greenwich Mean Time) or Universal Time, in seconds.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

208

Commands Reference

Syntax

time to GMT required

Result
The integer (page 110) number of seconds difference between the current time zone and Universal Time.

Examples
The following example computes the time difference between the current location and Cupertino:

set localOffset to time to GMT --local difference, in seconds
set cupertinoOffset to -8.0 * hours

——doesn't account for Daylight Savings; may actually be -7.0.
set difference to (localOffset - cupertinoOffset) / hours

display dialog ("Hours to Cupertino: " & difference)

write

Writes data to a specified file.

Syntax
write anything required
to fileSpecifier required
starting at integer optional
for integer optional
as class optional

Parameters

anything

The data to write to the file. This is typically text, but may be of any type. When reading the data back,
the read command must specify the same type, or the results are undefined.

to (alias (page 98) | file (page 110) | file descriptor)
The file to write to, as an alias, a file specifier, or an integer (page 110) file descriptor. A file descriptor
must be obtained as the result of an earlier open for access (page 178) call.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

209

Commands Reference

starting at (integer (page 110) | eof)
The byte position in the file to start reading from. The position is 1-based, so 1 is the first byte of the file,
2 the second, and so on. Negative integers count from the end of the file, so -1 is the last byte, -2 the
second-to-last, and so on. The constant eof is the position just after the last byte; use this to append
data to the file.

Default Value:
The current file pointer (see open for access (page 178)) if the file is open, or the beginning of the
file if not.

for integer (page 110)
The number of bytes to write.

Default Value:
Write all the data provided.

as class (page 104)
Write the data as this class. The most common ones control the use of three different text encodings:
text orstring

The primary text encoding, as determined by the user’s language preferences set in the
International preference panel. (For example, Mac OS Roman for English, MacJapanese for Japanese,
and so on.)

Unicode text
UTF-16.
«class utf8»
UTF-8.
Any other class is possible, for example date or 1ist, but is typically only useful if the data will be read
using a read statement specifying the same value for the as parameter.

Default Value:
The class of the supplied data. See Special Considerations.

Result
None. If the file is open, write will advance the file pointer by the number of bytes written, so the nextwrite
command will start writing where the last one ended.

Signals an error if the file is open without write permission, or if there is any other problem that prevents
writing to the file, such as a lack of disk space.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

210

Commands Reference

Examples
The following example opens a file with write permission, creating it if it doesn’t already exist, writes text to
it, and closes it.

set fp to open for access file "HD:Users:myUser:NewFile" with write permission
write "Some text. And some more text." to fp

close access fp

Special Considerations

As specified above, write with no as parameter writes as the class of the supplied data, which means that in
AppleScript 2.0 write always writes text data using the primary encoding. Prior to 2.0, string and Unicode
text were distinct types, which meant that it would use primary encoding for st ring and UTF-16 for Unicode
text. For reliable results when creating scripts that will run on both 2.0 and pre-2.0, always specify the encoding
explicitly using as text oras Unicode text, as appropriate.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

2n

Reference Forms

This chapter describes AppleScript reference forms. A reference form specifies the syntax for identifying an
object or group of objects in an application or other container—that is, the syntax for constructing an object
specifier (described in “Object Specifiers” (page 30)).

For example, the following object specifier (from a script targeting the Finder) uses several index reference
forms, which identify an object by its number within a container:

item 1 of second folder of disk 1

Important: When you use a reference form, you specify the container in which the referenced object or
objects reside. This takes the form referenceForm of containerObject. You can also enclose a reference
form in a te L1 statement, which then serves to specify the outer container. For more information, see
“Absolute and Relative Object Specifiers” (page 32).

Some of the examples of reference forms shown in this chapter will not compile as shown. To compile
them, you may need to add an enclosing te 11 statement, targeting the Finder or the word processing
application TextEdit.

Arbitrary

Specifies an arbitrary object in a container. This form is useful whenever randomness is desired.

Because an arbitrary item is, by its nature, random, this form is not useful for operations such as processing
each item in a group of files, words, or other objects.

Syntax

some class

Placeholders
class
The class for an arbitrary object.

Examples
The following creates a new Mail message with a random signature (and depends on the user having at least
one signature):

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

212

Reference Forms

tell application "Mail"
activate
set randomSignature to some signature
set newMessage to make new outgoing message -
at end of outgoing messages with properties -
{subject:"Guess who?", content:"Welcome aboard.", visible:true}
set message signature of newMessage to randomSignature

end tell

The following simply gets a random word from a TextEdit document:

tell application "TextEdit"
some word of document 1 —— any word from the first document

end tell

Every
Specifies every object of a particular class in a container.

Syntax

every class

pluralClass

Placeholders
class
A singular class (such as word or paragraph).

pluralClass
The plural form for a class (such as words or paragraphs).

Value

The value of an every object specifier is a list of the objects from the container. If the container does not
contain any objects of the specified class, the list is an empty list: {}. For example, the value of the expression
every word of {1, 2, 3}isthe empty list {}.

Examples
The following example uses an every object specifier to specify every word contained in a text string:

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

213

Reference Forms

set myText to "That's all, folks"

every word of myText ——result: {"That's", "all", "folks"} (a list of three words)

The following object specifier specifies the same list:

words of myText

The following example specifies a list of all the items in the Users folder of the startup disk (boot partition):

tell application "Finder"
every item of folder "Users" of startup disk

end tell

The following specifies the same list as the previous example:

tell application "Finder"
items of folder "Users" of startup disk

end tell
Discussion
Use of the every reference form implies the existence of an index property for the specified objects.

If you specify an every object specifier as the container from which to obtain a property or object, the result
is a list containing the specified property or object for each object of the container. The number of items in
the list is the same as the number of objects in the container.

Filter

Specifies all objects in a container that match a condition, or test, specified by a Boolean expression.

The filter form specifies application objects only. It cannot be used to filter the AppleScript objects 1ist (page
112), record (page 118), or text (page 123). A term that uses the filter form is also known as a whose clause.

Note: You can use the words where or that as synonyms for whose.

A filter reference form can often be replaced by a repeat statement, or vice versa. For example, the following
script closes every TextEdit window that isn't named "01ld Report.rtf':

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

214

Reference Forms

tell application "TextEdit"
close every window whose name is not "Old Report.rtf"

end tell

You could instead obtain a list of open windows and set up a repeat statement that checks the name of each
window and closes the window if it isn't named "01ld Report. rtf". However, a whose clause is often the
fastest way to obtain the desired information.

The following is an abbreviated form of the previous script:

windows of application "TextEdit" whose name is not "Old Report.rtf"

For related information, see “repeat Statements” (page 252).

Syntax

objectSpecifier (whose | where) booleanTest

Placeholders
objectSpecifier

Specifies the container in which to look for objects that match the Boolean test.
whose | where

These words have the same meaning, and refer to all of the objects in the specified container that match
the conditions in the specified Boolean expression.

booleanTest
Any Boolean expression (see the boolean (page 102) class definition).

Value
The value of a filter reference form is a list of the objects that pass the test. If no objects pass the test, the list
is an empty list: {}.

Examples
The following example shows an object specifier for all open Finder windows that do not have the name
"AppleScript Language Guide".

tell application "Finder"
every window whose name is not "AppleScript Language Guide"
end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

215

Reference Forms

Discussion
In effect, a filter reduces the number of objects in a container. Instead of specifying every Finder window, the
following object specifier specifies just the windows that are currently zoomed:

every window whose zoomed is true

To specify a container after a filter, you must enclose the filter and the object specifier it applies to in parentheses,
as in this example:

tell application "Finder"
(files whose file type is not "APPL") in folder "HD:SomeFolder:"
end tell

Within a test in a filter reference, the direct object is the object being tested. Though it isn’t generally needed,
this implicit target can be specified explicitly using the keyword it, which is described in “The it and me
Keywords” (page 45).

The following example shows several equivalent ways of constructing a filter reference to find all the files in

a folder that whose name contains the word “AppleScript” While the term it refers to the Finder application
outside of the filter statements, within them of it refers to the current file being tested. The result of each

filter test is the same and is not changed by including or omitting the term of it:

tell application "Finder"
it ——result: application "Finder" (target of tell statement)
set myFolder to path to home folder
——result: alias "Leopard:Users:myUser:"
files in myFolder —-result: a list of Finder document files
files in myFolder where name of it contains "AppleScript"
(* result: document file "AppleScriptLG.pdf" of folder "myUser"
of folder "Users" of startup disk of application "Finder"}x)
files in myFolder where name contains "AppleScript" -- same result
every file in myFolder whose name contains "AppleScript" —- same result
every file in myFolder where name of it contains "AppleScript"
—-- same result

end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

216

Reference Forms

A filter reference form includes one or more tests. Each test is a Boolean expression that compares a property
or element of each object being tested, or the objects themselves, with another object or value. Table 8-1 (page
217) shows some filter references, the Boolean expressions they contain, and what is being tested in each

reference.

Table 8-1 Boolean expressions and tests in filter references
Filter reference form Boolean expression What is being tested
windows whose zoomed 1is zoomed is true The zoomed property of each
true window
windows whose name isn’t name isn’t "Hard The name property of each
"Hard Disk" Disk" window
files whose creator type creator type is The creator type property of
is "OMGR" "OMGR" each file

A test can be any Boolean expression. You can link multiple tests, as in the following statement:

windows whose zoomed is true and floating is false

ID

Specifies an object by the value of its id property.

You can use the ID reference form only with application objects that have an ID property.

Syntax

class id expression

Placeholders
expression
The id value.

Examples
The following examples use the ID reference form to specify an application by ID and a disk object by ID.

tell application id "com.apple.finder"
—— specifies an application (Finder) by its ID
disk id -100 —- specifies a Finder disk object by ID

name of disk id -100 —-result: "Leopard_GM" (gets name from ID specifier)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

217

Reference Forms

end tell

Discussion
Use of the id reference form implies the existence of a id property for the specified objects.

Although id properties are most often integers, an id property can belong to any class. An application that
supports id properties for its scriptable objects must guarantee that the IDs are unique within a container.
Some applications may also provide additional guarantees, such as ensuring the uniqueness of an ID among
all objects.

The value of an id property is not typically modifiable. It does not change even if the object is moved within
the container. This allows you to save an object’s ID and use it to refer to the object for as long as the object
exists. In some scripts you may wish to refer to an object by its ID, rather than by a property such as its name,
which may change. Similarly, you could keep track of an item by its index, but indexes can change when items
in a container are added, deleted, or even renamed.

Note: A good way to keep track of files and folders is to use an alias (page 98).

Starting in AppleScript 2.0, objects of class application (page 99) have an id property, which represents the
application’s bundle identifier (the default) or its four-character signature code.

Also starting in AppleScript 2.0, objects of class text (page 123) have an id property, representing the Unicode
code point or points for the character or characters in the object. Because a text object’s ID is based on the
characters it contains, these IDs are not guaranteed to be unique, and in fact will be identical for two text
objects that store the same characters. And in fact, there is no way to tell two such objects apart by inspection.

Index

Specifies an object by describing its position with respect to the beginning or end of a container.

For related information, see “Relative” (page 224).

Syntax

class [index] integer
integer (st |nd|rd|th)class

(first|second|third|fourth|fifth|sixth|seventh|eighth|ninth|tenth)class

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

218

Reference Forms

(last| front|back) class

Placeholders
class
The class of the indexed object to obtain.
integer
An integer that describes the position of the object in relation to the beginning of the container (if integer
is a positive integer) or the end of the container (if integer is a negative integer).
st|nd|rd|th
Appended to the appropriate integer to form an index. For example, 1st, 2nd, 3rd.

first|second|third | fourth|fifth|sixth|seventh|eighth|ninth|tenth
Specify one of the ordinal indexes.

The forms first, second, and so on are equivalent to the corresponding integer forms (for example,
second word is equivalent to 2nd word). For objects whose index is greater than 10, you can use the
forms 12th, 23rd, 101st, and so on. (Note that any integer followed by any of the suffixes listed is valid;
for example, you can use 11rd to refer to the eleventh object.)

last | front | back
The front form (for example, front window) is equivalent to class 7 (window 1) or first class (first
window). The last and back forms (for example, last word and back window) refer to the last object
in a container. They are equivalent to class -1 (for example, window -1).

Examples
Each of the following object specifiers specifies the first item on the startup disk:

item 1 of the startup disk
item index 1 of the startup disk —— "index" is usually omitted

the first item of the startup disk

The following object specifiers specify the second word from the beginning of the third paragraph:

word 2 of paragraph 3
2nd word of paragraph 3

second word of paragraph 3

The following object specifiers specify the last word in the third paragraph:

word =1 of paragraph 3

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

219

Reference Forms

last word of paragraph 3

The following object specifiers specify the next-to-last word in the third paragraph.

word —2 of paragraph 3
-2th word of paragraph 3

Discussion

Indexes are volatile. Changing some other property of the object may change its index, as well as the index of
other like objects. For example, after deleting word 4 from a paragraph, the word no longer exists. But there
may still be aword 4—the word that was formerly word 5. Afterword 4 is deleted, any words with an index
higher than 4 will also have a new index. So the object an index specifies can change.

For a unique, persistent object specifier, you can use the id reference form (see “ID” (page 217)), if the application
supports it for the class of object you are working with. And for keeping track of a file, you can use an
alias (page 98) object.

Middle
Specifies the middle object of a particular class in a container. This form is rarely used.

Syntax

middle class

Placeholders
class
The class of the middle object to obtain.

Examples

tell application "TextEdit"

middle paragraph of front document
end tell
middle item of {1, "doughnut", 33} —-result: "doughnut"
middle item of {1, "doughnut", 22, 33} —--result: "doughnut"
middle item of {1, "doughnut", 11, 22, 33} ——result: 11

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

220

Reference Forms

Discussion
The middle reference form generally works only when the index form also works.

AppleScript calculates the middle object by taking half the count, then rounding up. For example, the middle
word of a paragraph containing ten words is the fifth word; the middle of eleven words is the sixth.

Name
Specifies an object by name.

Syntax

class [named] nameText

Placeholders
class
The class for the specified object.

nameText
The value of the object’s name property.

Examples
The following statements identify objects by name:

document "Report.rtf"

window named "logs"

Discussion
Use of the name reference form implies the existence of a name property for the specified objects.

In some applications, it is possible to have multiple objects of the same class in the same container with the
same name. For example, if there are two drives named “Hard Disk’, the following statement is ambiguous (at
least to the reader):

tell application "Finder"
item 1 of disk "Hard Disk"
end tell

In such cases, it is up to the application to determine which object is specified by a name reference.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

221

Reference Forms

Property
Specifies a property of an object.

Syntax

propertyLabel

Placeholders
propertyLabel
The label for the property.

Examples
The following example is an object specifier to a property of a Finder window. It lists the label for the window’s
property (zoomed) and its container (front window). zoomed is a Boolean property.

zoomed of front window — e.g., false, if the window isn't zoomed

For many objects, you can obtain a list of properties:

tell app "Finder"
properties of window 1 —-result: a list of properties and their values

end tell

The following example is an object specifier to the UnitPrice property of a record (page 118) object. The
label of the property is UnitPrice and the container is the record object.

UnitPrice of {Product:"Super Snack", UnitPrice:0.85, Quantity:10} ——result: 0.85

Discussion

Property labels are listed in class definitions in application dictionaries. Because a property’s label is unique
among the properties of an object, the label is all you need to specify the property—there is no need to specify
the class of the property.

Range

Specifies a series of objects of the same class in the same container. You can specify the objects with a pair of
indexes (such aswords 12 thru 24) or with a pair of boundary objects (integers from integer 1 to
integer 3).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

222

Reference Forms

Syntax

every class from boundarySpecifier1 to boundarySpecifier2

pluralClass from boundarySpecifierl to boundarySpecifier2

class startindex (thru | through) stopindex

pluralClass startindex (thru | through) stoplndex

Placeholders
class
A singular class (such as window or word).

pluralClass
A plural class (such as windows or words).

boundarySpecifier1 and boundarySpecifier2
Specifiers to objects that bound the range. The range includes the boundary objects. You can use the
reserved word beginning in place of boundarySpecifier1 to indicate the position before the first object
of the container. Similarly, you can use the reserved word end in place of boundarySpecifier2 to indicate
the position after the last object in the container.

startindex and stopindex
The indexes of the first and last object of the range (such as 1 and 1@ inwords 1 thru 10).

Though integer indexes are the most common class, the start and stop indexes can be of any class. An
application determines which index classes are meaningful to it.

Value

The value of a range reference form is a list of the objects in the range. If the specified container does not
contain objects of the specified class, or if the range is out of bounds, an error is returned. For example, the
following range specifier results in an error because there are no words in the list:

words 1 thru 3 of {1, 2, 3} ——result: an error

Examples
The following example shows the boundary object form of a range specifier. When you compile this statement,
Script Editor converts from integer 1 to integer 2totheform integers 1 thru 2.

set intlList to integers from integer 1 to integer 2 of {17, 33, 24}
——result: {17, 33}

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

223

Reference Forms

In the next example, the phrase folders 3 thru 4 is a range specifier that specifies a list of two folders in

the container startup disk:

tell application "Finder"
folders 3 thru 4 of startup disk
end tell

——result: a list of folders (depends on contents of startup disk)

Discussion
If you specify a range specifier as the container for a property or object, as in

name of folders 2 thru 3 of startup disk

the result is a list containing the specified property or object for each object of the container. The number of
items in the list is the same as the number of objects in the container.

To obtain a contiguous series of characters—instead of a list—from a text object, use the text class:

text from word 1 to word 4 of "We're all in this together"
—result: "We're all in this"
words 1 thru 4 of "We're all in this together"

——result: {"We're", "all", "in", '"this"}

Relative

Specifies an object or an insertion point in a container by describing a position in relation to another object,
known as the base, in the same container.

Syntax

[class 1(before| [in] front of) baseSpecifier

[class 1(after| [in] back of|behind) baseSpecifier

Placeholders
class
The class identifier of the specified object. If you omit this parameter, the specifier refers to an insertion

point.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

224

Reference Forms

baseSpecifier
A specifier for the object.

before| [in] front of
These forms are equivalent, and refer to the object immediately preceding the base object.

after| [in] back of |behind
These forms are equivalent, and refer to the object immediately after the base.
beginning | front
These forms are equivalent, and refer to the first insertion point of the container (insertion point

1).

end | back
These forms are equivalent, and refer to the last insertion point of the container (insertion point
-1).

Although terms such as beginning and end sound like absolute positions, they are relative to the existing
contents of a container (that is, before or after the existing contents).

Examples
The two relative specifiers in the following tel1 block specify the same file by identifying its position relative
to another file on a disk:

tell application "Finder"
item before item 3 of startup disk ——-result: e.g., a specifier
item after item 1 of startup disk ——result: e.g., a specifier

end tell

The following example shows how to use various relative specifiers in a word processing document:

tell first document of application "TextEdit"

copy word 1 to before paragraph 3

copy word 3 to in back of paragraph 4

copy word 1 of the last paragraph to behind the third paragraph
end tell

Discussion
The relative reference form generally works only when the index form also works.

You can specify only a single object with a relative specifier—an object that is either before or after the base
object.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

225

Operators Reference

This chapter describes AppleScript operators. An operator is a symbol, word, or phrase that derives a value
from another value or pair of values. An operation is the evaluation of an expression that contains an operator.
An operand is an expression from which an operator derives a value.

AppleScript provides logical and mathematical operators, as well as operators for containment, concatenation,
and obtaining a reference to an object. Operators that operate on two values are called binary operators,
while operators that operate on a single value are known as unary operators.

The first part of this chapter contains two tables: Table 9-1 summarizes all of the operators that AppleScript
uses, and Table 9-2 (page 234) shows the order in which AppleScript evaluates operators within expressions.
The rest of the chapter shows how AppleScript evaluates representative operators in script expressions.

Table 9-1 AppleScript operators
AppleScript operator Description

and Logical conjunction.

A binary logical operator that combines two Boolean values.
The result is true only if both operands evaluate to true.

AppleScript checks the left-hand operand first and, if its is
false, ignores the right-hand operand. (This behavior is
called short-circuiting.)

Class of operands: boolean (page 102)

Class of result: boolean

or Logical disjunction.

A binary logical operator that combines two Boolean values.
The result is true if either operand evaluates to true.

AppleScript checks the left-hand operand first and, if its is
true, ignores the right-hand operand. (This behavior is
called short-circuiting.)

Class of operands: boolean (page 102)

Class of result: boolean

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

226

Operators Reference

AppleScript operator

&

is equal
equals

[is] equal to

(Option-equal sign on U.S. keyboard)
is not

isn't

isn't equal [to]

is not equal [to]

doesn't equal

does not equal

Description

Concatenation.

A binary operator that joins two values. If the left-hand
operand is a text object, the result is a text object (and
only in this case does AppleScript try to coerce the value
of the right-hand operand to match that of the left).

If the operand to the left is a record, the result is a record.
If the operand to the left belongs to any other class, the
result is a list.

For more information, see & (concatenation) (page 236).
Class of operands: any

Class of result: list (page 112), record (page 118),
text (page 123)

Equality.

A binary comparison operator that results in true if both
operands have the same value. The operands can be of any
class.

For more information, see equal, is not equal to (page
240).

Class of operands: boolean (page 102)

Class of result: boolean

Inequality.

A binary comparison operator that results in t rue if its two
operands have different values. The operands can be of
any class.

For more information, see equal, is not equal to (page
240).

Class of operands: boolean (page 102)

Class of result: boolean

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

227

Operators Reference

AppleScript operator

>

[is] greater than

comes after

is not less than or equal [to]

isn't less than or equal [to]

<
[is] less than
comes before

is not greater than or equal
[to]

isn't greater than or equal
[to]

Description

Greater than.

A binary comparison operator that results in true if the
value of the left-hand operand is greater than the value of
the right-hand operand.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the left-hand operand.

For more information, see greater than, less
than (page 241).

Class of operands: date (page 106), integer (page 110),
real (page 116), text (page 123)

Class of result: boolean (page 102)

Less than.

A binary comparison operator that results in true if the
value of the left-hand operand is less than the value of the
right-hand operand.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see greater than, less
than (page 241).

Class of operands: date (page 106), integer (page 110),
real (page 116), text (page 123)

Class of result: boolean (page 102)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

228

Operators Reference

AppleScript operator

= (Option-period on U.S. keyboard)

>=

[is] greater than or equal [to]

is not less than
isn't less than
does not come before

doesn't come before

< (Option-comma on U.S. keyboard)
<=

[is] less than or equal [to]
is not greater than

isn't greater than

does not come after

doesn't come after

start[s] with
begin[s] with

Description

Greater than or equal to.

A binary comparison operator that results in true if the
value of the left-hand operand is greater than or equal to
the value of the right-hand operand.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

The method AppleScript uses to determine which value is
greater depends on the class of the operands.

Class of operands: date (page 106), integer (page 110),
real (page 116), text (page 123)

Class of result: boolean (page 102)

Less than or equal to.

A binary comparison operator that results in true if the
value of the left-hand operand is less than or equal to the
value of the right-hand operand.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

The method AppleScript uses to determine which value is
greater depends on the class of the operands.

Class of operands: date (page 106), integer (page 110),
real (page 116), text (page 123)

Class of result: boolean (page 102)

Starts with.

A binary containment operator that results in true if the
list or text object to its right matches the beginning of
the list or text object to its left.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see starts with, ends with (page
242).

Class of operands: list (page 112), text (page 123)
Class of result: boolean (page 102)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

229

Operators Reference

AppleScript operator

end[s] with

contain[s]

does not contain

doesn't contain

Description

Ends with.

A binary containment operator that results in true if the
list or text object to its right matches the end of the list
or text object to its left.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see starts with, ends with (page
242).

Class of operands: list (page 112), text (page 123)
Class of result: boolean (page 102)

Containment.

A binary containment operator that results in true if the
list, record, or text object to its right matches any part of
the list, record, or text object to its left.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the operand to the left.

For more information, see contains, is contained
by (page 239).

Class of operands: list (page 112), record (page 118),
text (page 123)

Class of result: boolean (page 102)

Non-containment.

A binary containment operator that results in true if the
list, record, or text object to its right does not match any
part of the list, record, or text object to its left.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the right-hand
operand to the class of the left-hand operand.

For more information, see contains, is contained
by (page 239).

Class of operands: list (page 112), record (page 118),
text (page 123)

Class of result: boolean (page 102)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

230

Operators Reference

AppleScript operator
is in

is contained by

is not in
is not contained by

isn't contained by

Description

Containment.

A binary containment operator that results in true if the
list, record, or text object to its left matches any part of
the list, record, or text object to its right.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the left-hand
operand to the class of the right-hand operand.

For more information, see contains, is contained
by (page 239).

Class of operands: list (page 112), record (page 118),
text (page 123)

Class of result: boolean (page 102)

Non-containment.

A binary containment operator that results in true if the
list, record, or text object to its left does not match any
part of the list, record, or text object to its right.

Both operands must evaluate to values of the same class.
If they don't, AppleScript attempts to coerce the left-hand
operand to the class of the right-hand operand.

For more information, see contains, is contained
by (page 239).

Class of operands: list (page 112), record (page 118),
text (page 123)

Class of result: boolean (page 102)

Multiplication.

A binary arithmetic operator that multiplies the number to
its left and the number to its right.

Class of operands: integer (page 110), real (page 116)

Class of result: integer, real

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

231

Operators Reference

AppleScript operator

—+

/
+ (Option-slash on U.S. keyboard)

div

Description

Addition.

A binary arithmetic operator that adds the number or date
to its left and the number or date to its right. Only integers
can be added to dates. AppleScript interprets such an
integer as a number of seconds.

As a unary operator, + has no effect and is removed on
compile.

Class of operands: date (page 106), integer (page 110),
real (page 116)

Class of result: date, integer, real

Subtraction.
A binary or unary arithmetic operator.

The binary operator subtracts the number to its right from
the number or date to its left.

The unary operator makes the number to its right negative.

Only integers can be subtracted from dates. AppleScript
interprets such an integer as a number of seconds.

Class of operands: date (page 106), integer (page 110),
real (page 116)

Class of result: date, integer, real

Division.

A binary arithmetic operator that divides the number to
its left by the number to its right.

Class of operands: integer (page 110), real (page 116)

Class of result: real

Integral division.

A binary arithmetic operator that divides the number to
its left by the number to its right and returns the integral
part of the answer as its result.

Class of operands: integer (page 110), real (page 116)

Class of result: integer

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

232

Operators Reference

AppleScript operator

mod

as

not

Description

Remainder.

A binary arithmetic operator that divides the number to
its left by the number to its right and returns the remainder
as its result.

Class of operands: integer (page 110), real (page 116)

Class of result: integer, real

Exponentiation.

A binary arithmetic operator that raises the number to its
left to the power of the number to its right.

Class of operands: integer (page 110), real (page 116)

Class of result: real

Coercion (or object conversion).

A binary operator that converts the left-hand operand to
the class listed to its right.

Not all values can be coerced to all classes. The coercions
that AppleScript can perform are listed in “Coercion (Object
Conversion)” (page 34). The additional coercions, if any,
that an application can perform is listed in its dictionary.

Class of operands: The right-hand operand must be a class
identifier; the left-hand operand must be a value that can
be converted to that class.

Class of result: The class specified by the class identifier to
the right of the operator
Negation.

A unary logical operator that results in t rue if the operand
toits right is false, and false if the operand is true.

Class of operand: boolean (page 102)

Class of result: boolean

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

233

Operators Reference

AppleScript operator Description

[a] (ref [to] | reference to) A reference to.

A unary operator that causes AppleScript to return a
reference (page 120) object that specifies the location of
the operand to its right. A reference is evaluated at run
time, not at compile time.

See a reference to (page 237) for more information.
Class of operand: any class type

Class of result: reference

When evaluating expressions, AppleScript uses operator precedence to determine which operations are
evaluated first. In the following expression, for example, AppleScript does not simply perform operations from
left to right—it performs the multiplication operation 2 * 5 first, because multiplication has higher precedence
than addition.

12 + 2 x 5 —result: 22

Table 9-2 (page 234) shows the order in which AppleScript performs operations. The column labeled
“Associativity” indicates the order in the case where there are two or more operands of the same precedence
in an expression. The word “None” in the Associativity column indicates that you cannot have multiple
consecutive occurrences of the operation in an expression. For example, the expression 3 = 3 = 3is not
legal because the associativity for the equal operator is “none.”

To evaluate expressions with multiple unary operators of the same order, AppleScript applies the operator
closest to the operand first, then applies the next closest operator, and so on. For example, the expression not
not not trueisevaluated asnot (not (not true)).

You can enforce the order in which AppleScript performs operations by grouping expressions in parentheses,
which are evaluated first, starting with the innermost pair of parentheses.

Table 9-2 Operator precedence

Order Operators Associativity Type of operator
1 () Innermost to outermost Grouping
2 + Unary Plus or minus sign for numbers

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

234

Operators Reference

Order Operators Associativity Type of operator
3 n Right to left Exponentiation
(note that this is different from standard math,
in which exponentiation takes precedence over
unary plus or minus)
4 * Left to right Multiplication and division
/
div
mod
5 + Left to right Addition and subtraction
6 & Left to right Concatenation
7 as Left to right Coercion
8 < None Comparison
<
>
>
9 = None Equality and inequality
#
10 not Unary Logical negation
Ll and Left to right Logical and
12 or Left to right Logical or

The following sections provide additional detail about how AppleScript evaluates operators in expressions:

®* & (concatenation) (page 236)

* a reference to (page 237)

® contains, is contained by (page 239)
® equal, is not equal to (page 240)
® greater than, less than (page 241)

e starts with, ends with (page 242)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

235

Operators Reference

& (concatenation)

The concatenation operator (&) concatenates text objects, joins record objects into a record, and joins other
objects into a list.

Table 9-1 (page 226) summarizes the use of use of this operator.

text

The concatenation of two text objects joins the characters from the left-hand text object to the characters
from the right-hand text object, without intervening spaces. For example, "'dump" & "truck" evaluates to
the text object "dumptruck".

If the left-hand operand is a text object, but the right-hand operand is not, AppleScript attempts to coerce
the right-hand operand to a text object. For example, when AppleScript evaluates the expression "Route
" & 66 it coerces the integer 66 to the text object "66", and the result is the text object "Route 66".

However, you get a different result if you reverse the order of the operands:

66 & "Route " —-result: {66, "Route "} (a list)

In the following example, the left-hand operand is a text object and the right-hand operand is a list, so
concatenation results in a text object:

item 1 of {"This"} & {"and", "that"} —- "Thisandthat"

record

The concatenation of two records joins the properties of the left-hand record to the properties of the right-hand
record. If both records contain properties with the same name, the value of the property from the left-hand
record appears in the result. For example, the result of the expression

{ name:"Matt", mileage:"8000" } & { name:"Steve", framesize:58 }

{ name:"Matt", mileage:'8000", frameSize:58 }

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

236

Operators Reference

All Other Classes

Except for the cases described above for text objects and record objects, the concatenation operator (&)
joins lists. A non-list operand is considered to be a list containing that operand. The following example shows
concatenation of two integers, a list and a text string, and a list and a record, respectively:

1& 2 —result: {1, 2}
{"this"} & "hello" —-result: {"this", "hello"}
{"this"} & {a:1, b:2} ——result: {"this", 1, 2}

If both the operands to be concatenated are lists, then the result is a list containing all the items in the left-hand
list, followed by all the items in the right-hand list. For example:

{"This"} & {"and", "that"} --result: {"This", "and", "that"}
{"This"} & item 1 of {"and", "that"} —-result: {"This", "and"}

To join two lists and create a list of lists, rather than a single list, you can enclose each list in two sets of brackets:

{1, 2}} & {{3, 4}} —-result: {{1, 2}, {3, 4}}

For information on working efficiently with large lists, see list (page 112).

a reference to

Thea reference to operator isa unary operator that returns a reference object. You can abbreviate this
operatortoa ref to,orref to,oreven just ref.

For related information, see the reference (page 120) class and “Object Specifiers” (page 30).

Examples

The following statement creates a reference object that contains an object specifier to the Finder startup
disk:

tell app "Finder" to set diskRef to a ref to startup disk

——result: startup disk of application "Finder"

The following shows how to obtain a reference object that refers to an item in a list:

set itemRef to a reference to item 3 of {1, "hello", 755, 99}

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

237

Operators Reference

—result: item 3 of {1, "hello", 755, 99}
set newTotal to itemRef + 45 ——result: 800

In the final line, AppleScript automatically resolves the object specifier contained in the reference itemRef
and obtains its value to use in the addition operation. To cause AppleScript to explicitly resolve a reference

object, you can use its contents property:

contents of itemRef —-result: 755

The next examples demonstrate how using a reference object can result in a different outcome than accessing
an object directly. The first example obtains a current track object from iTunes, gets the name, changes the
track, then gets the name again:

tell application "iTunes"
set curTrack to current track
—result: file track id 2703 of user playlist id 2425

- of source id 46 of application "iTunes"

display dialog (name of curTrack as string) -—-— "Shattered"

next track —— play next song

display dialog (name of curTrack as string) —— "Shattered"
end tell

Because curTrack is a specific track object, its name doesn’t change when the current track changes. But
observe the result when using a reference to the current track:

tell application "iTunes"
set trackRef to a reference to current track

——result: current track of application "iTunes"

display dialog (name of trackRef as string) -- '"Shattered"

next track —— play next song

display dialog (name of trackRef as string) -- "Strange Days"
end tell

Because trackRef isa reference object containing an object specifier, the specifier identifies the new track

when the current track changes.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

238

Operators Reference

contains, is contained by

The contains and is contained by operators work with lists, records, and text objects.

Table 9-1 (page 226) summarizes the use of these operators and their synonyms.

list
A list contains another list if the right-hand list is a sublist of the left-hand list. A sublist is a list whose items
appear in the same order and have the same values as any series of items in the other list. For example, the

following statement is true because 1 + 1 evaluates to 2, so that all the items in the right-hand list appear,
in the same order, in the left-hand list:

{ "this", "is", 1 + 1, "cool" } contains { "is", 2 }

The following statement is false because the items in the right-hand list are not in the same order as the
matching items in the left-hand list:

{ "this", "is", 2, "cool" } contains { 2, "is" }

Alist is contained by another list if the left-hand list is a sublist of the right-hand list. For example, the
following expression is true:

{ "is", 2} is contained by { "this", "is", 2, "cool" }

Both contains and is contained by work if the sublist is a single value—as with the concatenation
operator (&), single values are coerced to one-item lists. For example, both of the following expressions evaluate
to true:

{ "this", "is", 2, "cool" } contains 2

2 is contained by { "this", "is", 2, "cool" }

However, the following expressions, containing nested lists, both evaluate to false:

{"this", "is", {2}, "cool"} contains 2 —- false

{"this", "is", {2}, "cool"} contains {2} —— false

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

239

Operators Reference

record

A record contains another record if all the properties in the right-hand record are included in the left-hand
record, and the values of properties in the right-hand record are equal to the values of the corresponding
properties in the left-hand record. A record is contained by another record if all the properties in the left-hand
record are included in the right-hand record, and the values of the properties in the left-hand record are equal
to the values of the corresponding properties in the right-hand record. The order in which the properties
appear does not matter. For example, the following is true:

{ name:"Matt", mileage:'8000", description:"fast"} -

contains { description:"fast", name:"Matt" }

text

A text object contains another text object if the characters in the right-hand text object are equal to any
contiguous series of characters in the left-hand text object. For example,

"operand" contains "era"

is true, but

"operand" contains '"dna"

is false.

A text object is contained by another text object if the characters in the left-hand text object are equal to
any series of characters in the right-hand text object. For example, this statement is true:

era" is contained by "operand"

Text comparisons can be affected by considering and ignoring statements, as described in the Text section
of equal, is not equal to (page 240).

equal, is not equal to

The equaland is not equal to operators can handle operands of any class. Two expressions of different
classes are generally not equal, although for scalar operands, such as booleans, integers, and reals, two operands
are the same if they have the same value.

Table 9-1 (page 226) summarizes the use of these operators and their synonyms.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

240

Operators Reference

list

Two lists are equal if they both contain the same number of items and if the value of an item in one list is
identical to the value of the item at the corresponding position in the other list:

{ 7, 23, "Hello" } = {7, 23, "Goodbye"} —-result: false

record

Two records are equal if they both contain the same collection of properties and if the values of properties
with the same label are equal. They are not equal if the records contain different collections of properties, or
if the values of properties with the same label are not equal. The order in which properties are listed does not
affect equality. For example, the following expression is true:

{ name:"Matt", mileage:"8000" } = { mileage:"8000", name:"Matt"}

text

Two text objects are equal if they are both the same series of characters. They are not equal if they are different
series of characters. For related information, see the text (page 123) class.

Text comparisons can be affected by considering and ignoring statements, which instruct AppleScript to
selectively consider or ignore attributes of characters or types of characters. For example, unless you use an
ignoring statement, AppleScript compares text objects by considering all characters and punctuation.

AppleScript does not distinguish uppercase from lowercase letters unless you use a considering statement
to consider the case attribute. For example:

"DUMPtruck" is equal to "dumptruck" —--result: true
considering case
"DUMPtruck" is equal to "dumptruck" —--result: false

end considering

When comparing two text objects, if the test is not enclosed in a considering or ignoring statement,
then the comparison uses default values for considering and ignoring attributes (described in considering
/ ignoring (text comparison) (page 244)).

greater than, less than

The greater thanand less than operators work with dates, integers, real numbers, and text objects.

Table 9-1 (page 226) summarizes the use of these operators and their synonyms.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

241

Operators Reference

date

A date is greater than another date if it represents a later time. A date is less than another date if it represents
an earlier time.

integer, real

An integer or a real number is greater than another integer or real number if it represents a larger number. It
is less than another integer or real number if it represents a smaller number.

text

To determine the ordering of two text objects, AppleScript uses the collation order set in the Language pane
of International preferences. A text object is greater than (comes after) another text object based on the
lexicographic ordering of the user’s language preference. With the preference set to English, the following two
statements both evaluate to true:

"zebra" comes after "aardvark"

"zebra" > "aardvark"

The following two statements also evaluate to true:

"aardvark" comes before '"zebra"

"aardvark" < "zebra"

Text comparisons can be affected by considering and ignoring statements, as described in the Text section
of equal, is not equal to (page 240).

starts with, ends with

The starts with and ends with operators work with lists and text objects.
Table 9-1 (page 226) summarizes the use of these operators and their synonyms.

list

Alist starts with the items in a second list if all the items in the second list are found at the beginning of
the first list. A list ends with the items in a second list if all the items in the second list are found at the end
of the first list. For example, the following three expressions are all true:

{ "this", "is", 2, "cool" } ends with "cool"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

242

Operators Reference

{ "this", "is", 2, '"cool" } starts with "this"

{ "this", "is", 2, "cool" } starts with { "this", "is" }

text

A text object starts with the textin a second text object if all the characters in the second object are
found at the beginning of the first object. A text object ends with the textin a second text object if all
the characters in the second object are found at the end of the first object. For example, the following expression
is true:

"operand" starts with "opera"

A text object ends with another text object if the characters in the right-hand text object are the same as
the characters at the end of the left-hand text object. For example, the following expression is true:

"operand" ends with "and"

Text comparisons can be affected by considering and ignoring statements, as described in the Text section
of equal, is not equal to (page 240).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

243

Control Statements Reference

This chapter describes AppleScript control statements. A control statement is a statement that determines
when and how other statements are executed or how expressions are evaluated. For example, a control
statement may cause AppleScript to skip or repeat certain statements.

Simple statements can be written on one line, while compound statements can contain other statements,
including multiple clauses with nested and multi-line statements. A compound statement is known as a
statement block.

Compound statements begin with one or more reserved words, such as tell, that identify the type of control
statement. The last line of a compound statement always starts with end, and can optionally include the word
that begins the control statement (such as end tell).

considering and ignoring Statements

The considering and ignoring statements cause AppleScript to consider or ignore specific characteristics
as it executes groups of statements. There are two kinds of considering and ignoring statements:

* Those that specify attributes to be considered or ignored in performing text comparisons.

* Those that specify whether AppleScript should consider or ignore responses from an application.

considering / ignoring (text comparison)
Specify how AppleScript should treats attributes, such as case, in performing text comparisons.

Syntax

considering attribute [, attribute .. and attribute 1 -
[but ignoring attribute [, attribute ... and attribute 11

[statement ...
end considering

ignoring attribute [, attribute ... and attribute] -

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

244

Control Statements Reference

[but considering attribute [, attribute ... and attribute 11

[statement]...

end ignoring

Placeholders
attribute
A characteristic of the text:

case
If this attribute is ignored, uppercase letters are not distinguished from lowercase letters. See
Special Considerations below for related information. See also greater than, less than (page
241) for a description of how AppleScript sorts letters, punctuation, and other symbols.
diacriticals
If this attribute is ignored, text objects are compared as if no diacritical marks (suchas *, *, ", ",
and ") are present; for example, "'résumé" is equal to "' resume".
hyphens

If this attribute is ignored, text objects are compared as if no hyphens are present; for example
"anti-war" is equal to "antiwar".

numeric strings

By default, this attribute is ignored, and text strings are compared according to their character
values. For example, if this attribute is considered, "1.10.1" > "1.9.4" evaluates as true;
otherwise it evaluates as false. This can be useful in comparing version strings.

punctuation

If this attribute is ignored,text objects are compared as if no punctuation marks (such as . ,
? ¢ ; ' ")are present; for example "What? he inquired." is equal to "what he
inquired".

white space

If this attribute is ignored, the text objects are compared as if spaces, tab characters, and return
characters were not present; for example "Brick house' would be considered equal to
"Brickhouse".

Default Value:
Case and numeric strings are ignored; all others are considered.

statement
Any AppleScript statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

245

Control Statements Reference

Examples
The following examples show how consideringand ignoring statements for various attributes can change
the value of text comparisons.

"Hello Bob" = "HelloBob" —-result: false
ignoring white space
"Hello Bob" = "HelloBob" —-result: true

end ignoring

"BOB" = "bob" —--result: true
considering case
"BOB" = "bob" —--result: false

end considering

"a" = "3d" —-result: false
ignoring diacriticals
"a" = "3" —-result: true

end considering

"Babs" = '"babs" —-result: false

ignoring case
"Babs" = "babs" —--result: false

end ignoring

ignoring case and diacriticals
"Babs" = "bdbs" —--result: true

end ignoring

Discussion

You can nest considering and ignoring statements. If the same attribute appears in both an outer and
inner statement, the attribute specified in the inner statement takes precedence. When attributes in an inner
considering or ignoring statement are different from those in outer statements, they are added to the
attributes to be considered and ignored.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

246

Control Statements Reference

Special Considerations

Because text item delimiters (described in “version” (page 44)) respect considering and ignoring
attributes in AppleScript 2.0, delimiters are case-insensitive by default. Formerly, they were always case-sensitive.
To enforce the previous behavior, add an explicit considering case statement.

considering and ignoring are fully Unicode-aware. For example, with ignoring case, “OidlequBl tb 80”0 0 0 0 0 "
Also, the characters ignored by diacriticals, hyphens, punctuation, and white space are defined by Unicode
character classes:

* ignoring punctuation ignores category P* which includes left- and right-quotation marks such as "

"o« o»,

* ignoring hyphens ignores category Pd, which includes em- and en-dashes.

e 1ignoring whitespace ignores category Z*, plus tab (\t), return (\r), and linefeed (\n), which includes
em-, en-, and non-breaking spaces.

Para

considering / ignoring (application responses)
Permits a script to continue without waiting for an application to respond to commands that target it.

Syntax
considering | ignoring application responses
[statement]...

end [considering | ignoring]

Placeholders
statement
Any AppleScript statement.

Examples
The following example shows how to use an ignoring statement so that a script needn’t wait while Finder is
performing a potentially lengthy task:

tell application "Finder"
ignoring application responses
empty the trash
end ignoring

end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

247

Control Statements Reference

Your script may want to ignore most responses from an application, but wait for a response to a particular
statement. You can do so by nesting considering and ignoring statements:

tell application "Finder"
ignoring application responses
empty the trash
—— other statements that ignore application responses
considering application responses
set itemName to name of first item of startup disk
end considering
—— other statements that ignore application responses
end ignoring

end tell

Discussion

A response to an application command indicates whether the command completed successfully, and also
returns results and error messages, if there are any. When you use an ignoring application responses
block, you forego this information.

Results and error messages from AppleScript commands, scripting additions, and expressions are not affected
by the application responses attribute.

error Statements

During script execution, errors can occur in the operating system (for example, when a specified file isn't found),
in an application (for example, when the script specifies an object that doesn’t exist), and in the script itself.
An error message is a message that is supplied by an application, AppleScript, or OS X when an error occurs
during the handling of a command. An error message can include an error number, which is an integer that
identifies the error; an error expression, which is an expression, usually a text object, that describes the error;
and other information.

A script can signal an error—which can then be handled by an error handler—with the error statement. This
allows scripts to supply their own messages for errors that occur within the script. For example, a script can
prepare to handle anticipated errors by using a try (page 262) statement. In the on error branch of a try
statement, a script may be able to recover gracefully from the error. If not, it can use an error statement to
resignal the error message it receives, modifying the message as needed to supply information specific to the
script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

248

Control Statements Reference

error
Signals an error in a script.

Syntax

error [errorMessage 1[number errorNumber] -
[partial resultresultList] -

[from offendingObject 1 to expectedType]

Placeholders

errorMessage
A text object describing the error. Although this parameter is optional, you should provide descriptions
for errors wherever possible. If you do not include an error description, an empty text object (") is
passed to the error handler.

errorNumber
The error number for the error. This is an optional parameter. If you do not include a number parameter,
the value -2700 (unknown error) is passed to the error handler.

If the error you are signaling is a close match for one that already has an AppleScript error constant, you
can use that constant. If you need to create a new number for the error, avoid using one that conflicts
with error numbers defined by AppleScript, OS X, and the Apple Event Manager. In general, you should
use positive numbers from 500 to 10,000. For more information, see “Error Numbers and Error
Messages” (page 297).

resultList
A list of objects. Applies only to commands that return results for multiple objects. If results for some,
but not all, of the objects specified in the command are available, you can include them in the partial
result parameter. This is rarely supported by applications.

offendingObject
A reference to the object, if any, that caused the error.

expectedType
A class. If a parameter specified in the command was not of the expected class, and AppleScript was
unable to coerce it to the expected class, then you can include the expected class in the to parameter.

Examples
The following example uses a try (page 262) statement to handle a simple error, and demonstrates how you

can use an error statement to catch an error, then resignal the error exactly as it was received, causing
AppleScript to display an error dialog (and halt execution):

try

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

249

Control Statements Reference

word 5 of "one two three"
on error eStr number eNum partial result rList from badObj to expectedType
—— statements that take action based on the error
display dialog "Doing some preliminary handling..."
—— then resignal the error
error eStr number eNum partial result rList from badObj to expectedType

end try

In the next example, an error statement resignals an error, but omits any original error information and
supplies its own message to appear in the error dialog:

try
word 5 of "one two three"

on error
—— statements to execute in case of error
error "There are not enough words."

end try

For more comprehensive examples, see “Working with Errors” (page 301).

if Statements

An if statement allows you to define statements or groups of statements that are executed only in specific
circumstances, based on the evaluation of one or more Boolean expressions.

An if statement is also called a conditional statement. Boolean expressions in if statements are also called
tests.

if (simple)
Executes a statement if a Boolean expression evaluates to true.

Syntax

if boolean then statement

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

250

Control Statements Reference

Placeholders
boolean
A Boolean expression.

statement
Any AppleScript statement.

Examples
This script displays a dialog if the value of the Boolean expression age0fCat > 1is true.(The variable
ageOfCat is set previously.)

if ageOfCat > 1 then display dialog "This is not a kitten."

if (compound)
Executes a group (or groups) of statements if a Boolean expression (or expressions) evaluates to true.
Syntax

if boolean [then]

[statement]...

[else if boolean [then]

[statement 1..]...

[else

[statement 1..]

end[if]

Placeholders
boolean
A Boolean expression.

statement
Any AppleScript statement.

Examples
The following example uses a compound if statement, with a final e Lse clause, to display a statement based
on the current temperature (obtained separately):

if currentTemp < 60 then

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

251

Control Statements Reference

set response to "It's a little chilly today."
else if currentTemp > 80 then

set response to "It's getting hotter today."
else

set response to "It's a nice day today."
end if

display dialog response

Discussion

An if statement can contain any number of else if clauses; AppleScript looks for the first Boolean expression
contained inan if or else if clause thatis true, executes the statements contained in its block (the
statements between one else if andthefollowingelse if orelse clause), and then exits the if statement.

An if statement can also include a final e lse clause. The statements in its block are executed if no other test
in the if statement passes.

repeat Statements
You use a repeat statement to create loops or execute groups of repeated statements in scripts.

There are a number of types of repeat statement, each differing in the way it terminates the loop. Each of
the options, from repeating a loop a specific number of times, to looping over the items in a list, to looping
until a condition is met, and so on, lends itself to particular kinds of tasks.

For information on testing and debugging repeat statements, see “Debugging AppleScript Scripts” (page
52).

exit

Terminates a repeat loop and resumes execution with the statement that follows the repeat statement.

You can only use an exit statement inside a repeat statement. Though most commonly used with the
repeat (forever) form, you can also use an exit statement with other types of repeat statement.

Syntax
exit[repeat]

Examples
See the example in repeat (forever) (page 253).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

252

Control Statements Reference

repeat (forever)

Repeats a statement (or statements) until an exit statement is encountered.

Important: A repeat (forever) statement will never complete unless you cause it to do so.

To terminate a repeat (forever) statement, you can:
* Useanexit (page 252) statement and design the logic so that it eventually encounters the exit statement.

e Usea“return” (page 276) statement, which exits the handler or script that contains the loop, and therefore
the loop as well.

* Usea try (page 262) statement and rely on an error condition to exit the loop.

Syntax

repeat
[statement ...

end [repeat]

Placeholders
statement
Any AppleScript statement.

Examples

This form of the repeat statement is similar to the repeat until (page 254) form, except that instead of
putting a test in the repeat statement itself, you determine within the loop when it is time to exit. You might
use this form, for example, to wait for a lengthy or indeterminate operation to complete:

repeat
—— perform operations
if someBooleanTest then
exit repeat
end if

end repeat

In a script application that stays open, you can use an id le handler to perform periodic tasks, such as checking
for an operation to complete. See “idle Handlers” (page 95) for more information.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

253

Control Statements Reference

repeat (number) times
Repeats a statement (or statements) a specified number of times.

Syntax

repeat integer [times]
[statement ...

end [repeat]

Placeholders
integer
Specifies the number of times to repeat the statements in the body of the loop.

Instead of an integer, you can specify any value that can be coerced to an integer.
If the value is less than one, the body of the repeat statement is not executed.
statement

Any AppleScript statement.

Examples
The following handler uses the repeat (number) times form of the repeat statement to raise a passed

number to the passed power:

on raiseToTheNth(x, power)
set returnVal to x
repeat power — 1 times
set returnVal to returnVal *x x
end repeat
return returnVal

end raiseToTheNth

repeat until

Repeats a statement (or statements) until a condition is met. Tests the condition before executing any statements.

Syntax

repeat until boolean

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

254

Control Statements Reference

[statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value t rue when entering the loop, the statements in the loop are
not executed.

statement
Any AppleScript statement.

Examples

The following example uses the repeat untilform of the repeat statement to allow a user to enter database
records. The handler enterDataRecord (), which is not shown, returns true if the user is done entering
records:

set userDone to false
repeat until userDone
set userDone to enterDataRecord()

end repeat

repeat while

Repeats a statement (or statements) as long as a condition is met. Tests the condition before executing any
statements. Similar to the repeat untilform, except that it continues while a condition is t rue, instead of
until itis true.

Syntax

repeat while boolean

[statement]...

end [repeat]

Placeholders

boolean
A Boolean expression. If it has the value false when entering the loop, the statements in the loop are
not executed.

statement
Any AppleScript statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

255

Control Statements Reference

Examples
The following example uses the repeat while form of the repeat statement to allow a user to enter database

records. In this case, we've just reversed the logic shown in the repeat until (page 254) example. Here, the
handler enterDataRecord (), which is not shown, returns true if the user is not done entering records:

set userNotDone to true
repeat while userNotDone
set userNotDone to enterDataRecord()

end repeat

repeat with loopVariable (from startValue to stopValue)

Repeats a statement (or statements) until the value of the controlling loop variable exceeds the value of the

predefined stop value.

Syntax

repeat with loopVariable from startValue to stopValue [by stepValue]

[statement ...

end [repeat]

Placeholders
loopVariable
Controls the number of iterations. It can be a previously defined variable or a new variable you define in

the repeat statement.

startValue
Specifies a value that is assigned to loopVariable when the loop is entered.

You can specify an integer or any value that can be coerced to an integer.

stopValue
Specifies an value. When that value is exceeded by the value of loopVariable, iteration ends. If stopValue

is less than startValue, the body is not executed.

You can specify an integer or any value that can be coerced to an integer.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

256

Control Statements Reference

stepValue
Specifies a value that is added to loopVariable after each iteration of the loop. You can assignan integer
ora real value; a real value is rounded to an integer.

Default Value:
1

statement
Any AppleScript statement.

Examples

The following handler uses the repeat with loopVariable (from startValue to stopValue) form
of the repeat statement to compute a factorial value (the factorial of a number is the product of all the positive
integers from 1 to that number):

on factorial(x)
set returnvVal to 1
repeat with n from 2 to x
set returnvVal to returnVal x n
end repeat
return returnVal

end factorial

Discussion

You can use an existing variable as the loop variableina repeat with loopVariable (from startValue
to stopValue) statement or define a new one in the statement. In either case, the loop variable is defined
outside the loop. You can change the value of the loop variable inside the loop body but it will get reset to
the next loop value the next time through the loop. After the loop completes, the loop variable retains its last
value.

AppleScript evaluates startValue, stopValue, and stepValue when it begins executing the loop and stores the
values internally. As a result, if you change the values in the body of the loop, it doesn't change the execution
of the loop.

repeat with loopVariable (in list)
Loops through the items in a specified list.

The number of iterations is equal to the number of items in the list. In the first iteration, the value of the variable
is a reference to the first item in list, in the second iteration, it is a reference to the second item in list, and so
on.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

257

Control Statements Reference

Syntax

repeat with loopVariable in list

[statement ...

end [repeat]

Placeholders
loopVariable

Any previously defined variable or a new variable you define in the repeat statement (see Discussion).
list

A list or a object specifier (such aswords 1 thru 5) whose value is a list.

list can also be a record; AppleScript coerces the record to a list (see Discussion).

statement
Any AppleScript statement.

Examples

The following script examines a list of words with the repeat with loopVariable (in list) form of
the repeat statement, displaying a dialog if it finds the word “hammer” in the list. Note that within the loop,
the loop variable (currentWord) is a reference to an item in a list, so in the test statement (if contents
of currentWord is equal to "hammer" then) it must be castto text (as text).

set wordList to words in '"Where is the hammer?"
repeat with currentWord in wordList
log currentWord
if contents of currentWord is equal to "hammer" then
display dialog "I found the hammer!"
end if

end repeat

The statement Log currentWord logs the current list item to Script Editor’s log window. For more information,
see “Debugging AppleScript Scripts” (page 52).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

258

Control Statements Reference

Discussion

You can use an existing variable as the loop variableina repeat with loopVariable (in list) statement
or define a new one in the repeat with.. statement. In either case, the loop variable is defined outside the
loop. You can change the value of the loop variable inside the loop body but it will get reset to the next loop
value the next time through the loop. After the loop completes, the loop variable retains its last value.

AppleScript evaluates loopVariable in list as an object specifier that takes on the value of item 1 of 1ist,
item 2 of list, item 3 of list, and so on until it reaches the last item in the list, as shown in the
following example:

repeat with i in {1, 2, 3, 4}
set listItem to i
end repeat

——result: item 4 of {1, 2, 3, 4} ——result: an object specifier

To set a variable to the value of an item in the list, rather than a reference to the item, use the contents of
property:

repeat with i in {1, 2, 3, 4}
set listItem to contents of i
end repeat

——result: 4

You can also use the list items directly in expressions:

set total to @

repeat with i in {1, 2, 3, 4}
set total to total + i

end repeat

——result: 10

If the value of list is a record, AppleScript coerces the record to a list by stripping the property labels. For
example, {a:1, b:2, c:3} becomes {1, 2, 3}.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

259

Control Statements Reference

tell Statements

A tell statement specifies the default target—that is, the object to which commands are sent if they do not
include a direct parameter. Statements within a te 11 statement that use terminology from the targeted object
are compiled against that object’s dictionary.

The object of a tell statement is typically a reference to an application object ora script object. For example,
the following tell statement targets the Finder application:

tell application "Finder"
set frontWindowName to name of front window
—— any number of additional statements can appear here

end tell

You can nest tell statements inside other tell statements, as long as you follow the syntax and rules
described in tell (compound) (page 261).

When you need to call a handler from within a tel1 statement, there are special terms you use to indicate
that the handler is part of the script and not a command that should be sent to the object of the te 11 statement.
These terms are described in “The it and me Keywords” (page 45) and in “Calling Handlers in a tell
Statement” (page 91).

A tell statement that targets a local application doesn’t cause it to launch, if it is not already running. For
example, a script can examine the running property of the targeted application (page 99) object to determine
if the application is running before attempting to send it any commands. If it is not running it won't be launched.

If a tell statement targets a local application and executes any statements that require a response from the
application, then AppleScript will launch the application if it is not already running. The application is launched
as hidden, but the script can send it an activate (page 136) command to bring it to the front, if needed.

A tell statement that targets a remote application will not cause it to launch—in fact, it will not compile or
run unless the application is already running. Nor is it possible to access the running property of an application
on a remote computer.

tell (simple)
Specifies a target object and a command to send to it.

Syntax

tell referenceToObject to statement

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

260

Control Statements Reference

Placeholders
referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object specifier).

statement
Any AppleScript statement.

Examples
This simple te 11 statement closes the front Finder window:

tell front window of application "Finder" to close

For more information on how to specify an application object, see the application (page 99) class.

tell (compound)

Specifies a target object and one or more commands to send to it. A compound tel1l statement is different
from a simple tell statement in that it always includes an end statement.

Syntax

tell referenceToObject

[statement ...

end[tell]

Placeholders
referenceToObject
Any object. Typically an object specifier or a reference object (which contains an object specifier).

statement
Any AppleScript statement, including another tell statement.

Examples
The following statements show how to close a window using first a compound tell statement, then with two
variations of a simple tell statement:

tell application "Finder"
close front window

end tell

tell front window of application "Finder" to close

tell application "Finder" to close front window

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

261

Control Statements Reference

The following example shows a nested tell statement:

tell application "Finder"

tell document 1 of application "TextEdit"
set newName to word 1 — handled by TextEdit

end tell

set len to count characters in newName —- handled by AppleScript

if (len > 2) and (len < 15) then —- comparisons handled by AppleScript
set name of first item of disk "HD" to newName —- handled by Finder

end if

end tell

This example works because in each case the terminology understood by a particular application is used within
a tell block targeting that application. However, it would not compile if you asked the Finder forword 1 of
adocument, or told TextEdit to set name of the first item on a disk, because those applications do not support
those terms.

try Statements

A try statement provides the means for scripts to handle potential errors. It attempts to execute one or more
statements and, if an error occurs, executes a separate set of statements to deal with the error condition. If an
error occurs and there is no try statement in the calling chain to handle it, AppleScript displays an error and
script execution stops.

For related information, see “error Statements” (page 248) and “AppleScript Error Handling” (page 40).

try

Attempts to execute a list of AppleScript statements, calling an error handler if any of the statements results
in an error.

A try statement is a two-part compound statement that contains a series of AppleScript statements, followed
by an error handler to be invoked if any of those statements causes an error. If the statement that caused the
errorisincluded in a t ry statement, then AppleScript passes control to the error handler. After the error handler
completes, control passes to the statement immediately following the end of the try statement.

Syntax

try

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

262

Control Statements Reference

[statement]...

[on error[errorMessage 1[number errorNumber 1[from offendingObject 1 -

[partial result resultList][to expectedType]

[statement 1...]

end[error | try]

Placeholders
statement
Any AppleScript statement.

errorMessage
A text object, that describes the error.

errorNumber
The error number, an integer. For possible values, see “Error Numbers and Error Messages” (page 297).

offendingObject
A reference to the object, if any, that caused the error.

resultList
A list that provides partial results for objects that were handled before the error occurred. The list can
contain values of any class. This parameter applies only to commands that return results for multiple
objects. This is rarely supported by applications.

expectedType
The expected class. If the error was caused by a coercion failure, the value of this variable is the class of
the coercion that failed. (The second example below shows how this works in a case where AppleScript
is unable to coerce a text objectinto an integer.)

variable
Either a global variable or a local variable that can be used in the handler. A variable can contain any
class of value. The scope of a local variable is the handler. The scope of a global variable extends to any
other part of the script, including other handlers and script objects. For related information about local
and global variables, see “version” (page 44).

Examples

The following example shows how you can use a try statement to handle the “Cancel” button for a display
alert (page 156) command. Canceling returns an error number of -128, but is not really an error. This test
handler just displays a dialog to indicate when the user cancels or when some other error occurs.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

263

Control Statements Reference

try
display alert "Hello" buttons {'Cancel", "Yes", "No"} cancel button 1
on error errText number errNum
if (errNum is equal to -128) then
—— User cancelled.
display dialog "User cancelled."
else
display dialog "Some other error: " & errNum & return & errText
end if

end try

You can also use a simplified version of the try statement that checks for just a single error number. In the
following example, only error -128 is handled. Any other error number is ignored by this try statement, but
is automatically passed up the calling chain, where it may be handled by other try statements.

try

display alert "Hello" buttons {"Cancel", "Yes", "No"} cancel button 1
on error number -128

—— Either do something special to handle Cancel, or just ignore it.

end try

The following example demonstrates the use of the to keyword to capture additional information about an
error that occurs during a coercion failure:

try
repeat with i from 1 to "Toronto"
—— do something that depends on variable "i"
end repeat

on error from obj to newClass
log {obj, newClass} —-- Display from and to info in log window.

end try

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

264

Control Statements Reference

This repeat statement fails because the text object "Toronto" cannot be coerced to an integer (page
110). The error handler simply writes the values of obj (the offending value, "Toronto") and newClass (the
class of the coercion that failed, integer) to Script Editor’s Event Log History window (and to the script
window’s Event Log pane). The result is “(*Toronto, integer*); indicating the error occurred while trying to
coerce “Toronto” to an integer.

For additional examples, see “Working with Errors” (page 301).

use Statements

A use statement declares a required resource for a script—an application, script library, framework, or version
of AppleScript itself—and can optionally import terminology from the resource for use elsewhere in the script.
The effects and syntax of use vary slightly depending on the used resource; the different cases are described
below.

Note: use statements are supported in OS X Mavericks v10.9 (AppleScript 2.3) and later.

The basic function of use is to require that a resource be present before the script begins executing. If the
requirement cannot be met, the script will fail to run. A use statement can also specify a minimum version for
the required resource, such as a minimum compatible version of an application. In this example, AppleScript
will ensure that Safari version 7.0 or later is available:

use application "Safari" version "7.0"

use statements can also import terminology from the used resource, making the terms available throughout
the script without requiring the use of tell orusing terms from. AppleScript tracks where terms were
imported from, and sends events that use those terms to that target. Ordinarily, commands are sent to the
current target (it) as described in “Target” (page 38), but imported terminology overrides this. If...

* the event identifier is imported
* the direct parameter is an imported class or enumeration identifier

* the direct parameter is an object specifier ending with an imported term

...then the command is sent to the import source instead. This happens even if the command is inside a tell
block for a different target. For example, this script uses a command from Safari:

use application "Safari"

search the web for "AppleScript"

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

265

Control Statements Reference

Importing happens by default, but can be suppressed using thewithout importing parameter, if applicable.
You can use this to add requirements to existing scripts without changing anything else about the script:

use application "Safari" version "7.0" without importing

Because Safari's terms are not imported, the script will still need to use tell to send it events.

use (AppleScript)

Declares a required minimum version of AppleScript, and that the script expects a newer behavior for how
scripting additions are handled, described in use (scripting additions) (page 266).

Syntax

use AppleScript[version versionText]

Placeholders

versionText
The required minimum version of AppleScript, as a version string such as "'2. 3. 2". If omitted, its default
value is 2.3, the version in which use was introduced. This value is always text, not a number, and is
compared as if considering numeric strings isin effect. For example, '2.10" is greater than
"2.3", because 10 is greater than 3.

Examples
In its simplest form, use can be used to declare that the script uses AppleScript:

use AppleScript

This also implicitly means that the script uses AppleScript version 2.3 or later, when use was first introduced,
and that the script expects a newer behavior for how scripting additions are handled, described in use (scripting
additions) (page 266).

A use command can also explicitly specify a minimum required version of AppleScript:

use AppleScript version "2.3.2"

use (scripting additions)

Declares that a script uses scripting additions.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

266

Control Statements Reference

Syntax
use scripting additions -

[with importing | without importing | importing boolean]

Placeholders

boolean
A boolean value,true or false. AppleScript will recompile this to with importing orwithout
importing. The defaultis with importing.

Examples
Use use scripting additions to explictly declare that the script uses scripting addition commands:

use scripting additions

Discussion

Scripting addition commands are handled differently if a script has use commands. If a script has one or more
use commands of any kind, scripting addition commands are not available by default. You must explicitly
indicate that you wish to use scripting additions, either with a use or using terms from command.

use scripting additions

display dialog "hello world"

using terms from scripting additions
display dialog "hello world"

end using terms from

Ifascriptusesuse scripting additions, AppleScript may optimize scripting addition commands, sending
them to the current application instead of the current target (it) when it does not change the meaning to do
so. For example, random number (page 187) does not need to be sent to another application to work correctly,
and will always be sent to the current application when imported with use. Without a use scripting
additions command, AppleScript must use a less efficient dispatching scheme, so explicitly declaring them
is recommended.

use (application or script)
Declares a required application or script library, and may import its terms for use later in the script.

Syntax

use [identifier :1(script | application) specifier -

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

267

Control Statements Reference

[version versionText 1 —

[with importing | without importing | importing boolean]

Placeholders

versionText
The required minimum version of the resource as a version number, such as ""2.3.2". This value is always
text, not a number, and is compared as if considering numeric strings is in effect. For example,
"2.10" is greater than "2.3", because 10 is greater than 3.

identifier
An optional identifier for the resource.

specifier
Specifier data for the resource. This is typically a name, asin use application "Finder" oruse
script "My Library", but may be any valid specifier form, such as by ID, as in use application
id "com.apple.mail".

boolean
A boolean value,true or false. AppleScript will recompile this towith importing orwithout
importing. The defaultiswith importing.

Examples
A use command may refer to an application:

use application "Finder"

...or a script library:

use script "Happy Fun Ball"

If an optional identifier is given, it defines a property whose value is the required resource. This can make it
more convenient to refer to the resource, as in this example: the get statement uses the identifier Safari
instead of the full specifier application "Safari".

use Safari : application "Safari"

get the name of Safari's front window

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

268

Control Statements Reference

By using use with multiple applications, you can combine terms from different sources in ways impossible
using tell, because tell only makes one terminology source available at a time. For example, the following
script, in one statement, uses Mail and Safari to search the web for the sender of the currently selected mail
message. The get event is sent to Mail because it defines message viewer, while the search the web
event is sent to Safari.

use application "Mail"

use application "Safari"

search the web for the sender of the first item of -

(get selected messages of the front message viewer)

use (framework)

Declares a required framework for use with the AppleScript/Objective-C bridge. This is only supported in script
libraries.

Syntax

use framework specifier

Placeholders

specifier
Specifier data for the resource. This may be a base name ("AppKit"), afull name (" AppKit. framework"),
or a POSIX path (" /System/Library/Frameworks/AppKit. framework").

Examples
Most scripts that use the AppleScript/Objective-C bridge should have at least one of these two use statements:

use framework "Foundation"

use framework "AppKit"

You can also use other frameworks, such as WebKit:

use framework '"WebKit"

Discussion

When you declare a required framework, AppleScript ensures the framework is loaded before running your
script. To ensure that your AppleScript/Objective-C script libraries work correctly in any application, declare
all needed frameworks explicitly; otherwise, there is no guarantee that a given framework will be available,
and your script may fail.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

269

Control Statements Reference

The version parameter is not supported for frameworks; to check whether or not a framework supports a
certain feature, use NSClassFromString or —-respondsToSelector:.

using terms from Statements

Ausing terms from statement lets you specify which terminology AppleScript should use in compiling the
statements in a script. Whereas a tel1 statement specifies the default target (often an application) to which
commands are sent and the terminology to use,ausing terms fromstatement specifies only the terminology.

Ausing terms fromstatement can be useful in writing application event handler scripts, such as Mail rules.

Another use for this type of statement is with a script that targets an application on a remote computer that
may not be available when you compile the script (or the application may not be running). Or, you might be
developing locally and only want to test with the remote application at a later time. In either case, you can
useausing terms from statement to specify a local application (presumably with a terminology that
matches the one on the remote computer) to compile against.

Even if a statement contained within a using terms from statement compiles, the script may fail when run
because the target application’s terminology may differ from that used in compiling.

You can nestusing terms from statements. When you do so, each script statement is compiled against the
terminology of the application named in the innermost enclosing using terms from statement.

using terms from

Instructs AppleScript to use the terminology from the specified source in compiling the enclosed statements.
Syntax

using terms from(application | script | scripting additions)

[statement]...

end[using terms from]

Placeholders
application
A specifier for an application object.

script
A specifier for a script library.

statement
Any AppleScript statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

270

Control Statements Reference

Examples
The following example shows how to usea using terms from statementin writing a Mail rule action script.
These scripts take the following form:

using terms from application "Mail"
on perform mail action with messages theMessages for rule theRule
tell application "Mail"
—— statements to process each message in theMessages
end tell
end perform mail action with messages

end using terms from

To use the script, you open Preferences for the Mail application, create or edit a rule, and assign the script as
the action for the rule.

For an example that works with an application on a remote machine, see “Targeting Remote Applications” (page
51).

As discussed in “use Statements” (page 265), a script with any use statements does not make scripting addition
terms visible by default. You can enable scripting addition terms for specific parts of a script with using terms
from as in this example:

use AppleScript

—— scripting addition commands such as 'display dialog" will not compile here...

using terms from scripting additions —— ...but will compile within this block.
display dialog "Hello world!"

end using terms from

Discussion

using terms fromdoes notimportterms as use does, and is subject to the same limits on terminology use
as tell.using terms from scripting additions does not enable optimization of scripting addition
commands as use scripting additions does.

with timeout Statements

You can use awith timeout statement to control how long AppleScript waits for a command to execute
before timing out. By default, when an application fails to respond to a command, AppleScript waits for two
minutes before reporting an error and halting execution.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

271

Control Statements Reference

with timeout
Specifies how long AppleScript waits for a response to a command that is sent to another application.

Syntax

with timeout [of]integerExpression second[s]
[statement]...

end [timeout]

Placeholders

integerExpression
The amount of time, in seconds, AppleScript should wait before timing out (and interrupting the
command).

statement
Any AppleScript statement.

Examples

The following script tells TextEdit to close its first document; if the document has been modified, it asks the
user if the document should be saved. It includes the statement with timeout of 2@ seconds, so that if
the user doesn’t complete the close operation within 20 seconds, the operation times out.

tell application "TextEdit"
with timeout of 20 seconds
close document 1 saving ask
end timeout

end tell

Discussion

When a command fails to complete in the allotted time (whether the default of two minutes, or a time set by
awith timeout statement), AppleScript stops running the script and returns the error "event timed out".
AppleScript does not cancel the operation—it merely stops execution of the script. If you want the script to
continue, you can wrap the statements in a try (page 262) statement. However, whether your script can send
a command to cancel an offending lengthy operation after a timeout is dependent on the application that is
performing the command.

Awith timeout statement applies only to commands sent to application objects, not to commands sent to
the application that is running the script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

272

Control Statements Reference

In some situations, you may want to use an ignoring application responses statement (instead of a
with timeout statement) so that your script needn’t wait for application commands to complete. For more
information, see “considering and ignoring Statements” (page 244).

with transaction Statements

When you execute a script, AppleScript may send one or more Apple events to targeted applications. A
transaction is a set of operations that are applied as a single unit—either all of the changes are applied or none
are. This mechanism works only with applications that support it.

with transaction

Associates a single transaction ID with any events sent to a target application as a result of executing commands
in the body of the statement.

Syntax

with transaction [session]

[statement]...

end[transaction]

Placeholders
session
An object that identifies a specific session.

statement
Any AppleScript statement.

Examples

This example uses awith transaction statement to ensure that a record can be modified by one user
without being modified by another user at the same time. (In the following examples, “Small DB” and “Super
DB” are representative database applications.)

tell application "Small DB"
with transaction
set oldName to Field "Name"
set oldAddress to Field "Address"
set newName to display dialog -
"Please type a new name" -

default answer oldName

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

273

Control Statements Reference

set newAddress to display dialog -
"Please type the new address" -
default answer oldAddress
set Field "Name" to newName
set Field "Address" to newAddress
end transaction

end tell

The set statements obtain the current values of the Name and Address fields and invite the user to change
them. Enclosing these set statementsin asinglewith transaction statementinforms the application that
other users should not be allowed to access the same record at the same time.

Awith transaction statement works only with applications that explicitly support it. Some applications
only supportwith transaction statements (like the onein the previous example) that do not take a session
object as a parameter. Other applications support bothwith transaction statements that have no parameter
and with transaction statements that take a session parameter.

The following example demonstrates how to specify a session forawith transaction statement:

tell application "Super DB"
set mySession to make session with data {user: "Bob", password: "Secret"}

with transaction mySession

end transaction

end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

274

Handler Reference

This chapter provides reference for handlers, which are defined and introduced in “About Handlers” (page 83).
It describes the types of parameters you can use with handlers and how you invoke them. It also describes the
continue and return statements, which you use to control the flow of execution in handlers.

continue

A continue statement causes AppleScript to invoke the handler with the same name in the parent of the
current handler. If there is no such handler in the parent, AppleScript looks up the parent chain, ending with
the current application.

A continue statement is like a handler call, in that after execution completes in the new location, it resumes
with the statement after the continue statement.

Syntax

continue handlerName [parameterList]

Placeholders

handlerName
A required identifier that specifies the name of the current handler (which is also the name of the handler
in which to continue execution).

parameterList
The list of parameters to be passed to handlerName.

The list must follow the same format as the parameter definitions in the handler definition for the
command. For handlers with labeled parameters, this means that the parameter labels must match those
in the handler definition. For handlers with positional parameters, the parameters must appear in the
correct order.

You can list the parameter variables that were specified in the original command (and thus the original

values) or you can list values that may differ from those of the original variables.

Examples
You can write a handler that overrides an AppleScript command but uses a continue statement to pass
control on to the AppleScript command if desired:

on beep numTimes

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

275

Handler Reference

set x to display dialog "Start beeping?" buttons {"Yes", "No"}
if button returned of x is "Yes" then -
continue beep numTimes —- Let AppleScript handle the beep.
—— In this example, nothing to do after returning from the continue.

end beep

beep 3 —-result: local beep handler invoked; shows dialog before beeping

tell my parent to beep 3 — result: AppleScript beep command invoked

When AppleScript encounters the statement beep 3, it invokes the local beep handler, which displays a dialog.
If the user clicks Yes, the handler uses a continue statement to pass the beep command to the script’s parent
(AppleScript), which handles the command by beeping. If the user clicks No, it does not continue the beep
command, and no sound is heard.

The final statement, tell my parent to beep 3, shows how to directly invoke the AppleScript beep
command, rather than the local handler.

For an example that uses a continue statement to exit a script handler and return control to the application’s
default quit handler, see “quit Handlers” (page 96).

For additional examples, see “Using the continue Statement in Script Objects” (page 79).

return

A return statement exits a handler and optionally returns a specified value. Execution continues at the place
in the script where the handler was called.

Syntax
return [expression]

Placeholders
expression
Represents the value to return.

Examples
The following statement, inserted in the body of a handler, returns the integer 2:

return 2 — returns integer value 2

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

276

Handler Reference

If you include a return statement without an expression, AppleScript exits the handler immediately and no
value is returned:

return —— no value returned

See other sections throughout “Handler Reference” (page 275) for more examples of scripts that use the return
statement.

Discussion
If a handler does notinclude a return statement, AppleScript returns the value returned by the last statement.
If the last statement doesn’t return a value, AppleScript returns nothing.

When AppleScript has finished executing a handler (that is, when it executes a return statement or the last
statement in the handler), it passes control to the place in the script immediately after the place where the
handler was called. If a handler call is part of an expression, AppleScript uses the value returned by the handler
to evaluate the expression.

It is often considered good programming practice to have just one return statement and locate it at the end
of a handler. Doing so can provide the following benefits:

* The script is easier to understand.

* The script is easier to debug.

® You can place cleanup code in one place and make sure it is executed.

In some cases, however, it may make more sense to use multiple return statements. For example, the
minimumValue handlerin “Handler Syntax (Positional Parameters)” (page 281) is a simple script that uses two
return statements.

For related information, see “AppleScript Error Handling” (page 40).

Handler Syntax (Labeled Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax for
handlers that use labeled parameters.

Labeled parameters are identified by their labels and can be listed in any order.
Syntax
(on|to) handlerName -

[[of | in1directParamName] -

[ASLabel userParamName 1... =

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

277

Handler Reference

[given userLabel :userParamName [, userLabel : userParamName 1]..]
[statement]...

end [handlerName]

Placeholders
handlerName
An identifier that names the handler.

directParamName
An identifier for the direct parameter variable. If it is included, directParamName must be listed immediately
after the command name. The word of or in before directParamName is required in user-defined
handlers, but is optional in terminology-defined handlers (for example, those defined by applications).

If a user-defined handler includes a direct parameter, the handler must also include at least one variable
parameter.

ASLabel
An AppleScript-defined label. The available labels are: about, above, against, apart from, around,
aside from, at, below, beneath, beside, between, by, for, from, instead of, into, on, onto,
out of,over, since, thru (or through), under. These are the only labels that can be used without
the special label given. Each label must be unique among the labels for the handler (that is, you cannot
use the same label for more than one parameter).

userLabel
An identifier for a user-defined label, associated with a user-defined parameter. Each label must be unique.

The first userLabel -userParamName pair must follow the word given; any additional pairs are separated
by commas.

userParamName
An identifier for a parameter variable.

statement
Any AppleScript statement. These statements can include definitions of script objects, each of which,
like any script object, can contain handlers and other script objects. However, you cannot declare
another handler within a handler, except within a script object.

Handlers often contain a “return” (page 276) statement.

Examples
For examples and related conceptual information, see “Handlers with Labeled Parameters” (page 85).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

278

Handler Reference

Discussion

A handler written to respond to an application command (like those in “Handlers in Script Applications” (page
91)) need not include all of the possible parameters defined for that command. For example, an application
might define a command with up to five possible parameters, but you could define a handler for that command
with only two of the parameters.

If a script calls a handler with more parameters than are specified in the handler definition, the extra parameters
are ignored.

Calling a Handler with Labeled Parameters

This section describes the syntax for calling a handler with labeled parameters.

Syntax

handlerName -

[[of|in]directParam]-

[[ASLabel paramValue ..] -

| [with labelForTrueParam [, labelForTrueParam]... -
[(and|,) labelForTrueParam 1] -

| [without labelForFalseParam [, labelForFalseParam 1]..] -
[(and|,) labelForFalseParam 1] -

| [given userLabel.paramValue [, userLabel .paramValue]..]...

Placeholders
handlerName
An identifier that names the handler.

directParam
Any valid expression. The expression for the direct parameter must be listed first if it is included at all.

ASLabel
One of the following AppleScript-defined labels used in the definition of the handler: about, above,
against,apart from, around,aside from,at,below, beneath, beside, between, by, for, from,
instead of, into, on,onto, out of, over, since, thru (or through), under.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

279

Handler Reference

paramValue
The value of a parameter, which can be any valid expression.

labelForTrueParam
The label for a Boolean parameter whose value is true. You use this form in with clauses. Because the
value true is implied by the word with, you provide only the label, not the value. For an example, see
the findNumbers handler in “Handlers with Labeled Parameters” (page 85).

labelForFalseParam
The label for a Boolean parameter whose value is false. You use this form in without clauses. Because
the value false is implied by the word without, you provide only the label, not the value.

paramLabel
Any parameter label used in the definition of the handler that is not among the labels for ASLabel. You
must use the special label given to specify these parameters. For an example, see the findNumbers
handler below.

Examples
For examples, see “Handlers with Labeled Parameters” (page 85).

Discussion

When you call a handler with labeled parameters, you supply the following:

1. The handler name.

2. Avalue for the direct parameter, if the handler has one. It must directly follow the handler name.
3. One label-value pair for each AppleScript-defined label and parameter defined for the handler.

4. One label-value pair for each user-defined label and parameter defined for the handler that is not a boolean
value.

The first pair is preceded by the word given; a comma precedes each additional pair. The order of the
pairs does not have to match the order in the handler definition.

5. For each user-defined label and parameter defined for the handler that is a boolean value, you can either:

a. Supply the label, followed by a boolean expression (as with non-boolean parameters); for example:

given rounding:true

b. Use a combination of with and without clauses, as shown in the following examples:

with rounding, smoothing and curling

with rounding without smoothing, curling

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

280

Handler Reference

Note: AppleScript automatically converts between some forms when you compile. For
example, given rounding:trueisconvertedtowith rounding,andwith rounding,
smoothing is converted towith rounding and smoothing.

Handler Syntax (Positional Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax for
handlers that use positional parameters.

Important: The parentheses that surround the parameter list in the following definition are part of the
syntax.

Syntax

on | to handlerName ([userParamName [, userParamName]..])
[statement]...

end [handlerName]

Placeholders
handlerName
An identifier that names the handler.

userParamName
An identifier for a user-defined parameter variable.

statement
Any AppleScript statement, including global or local variable declarations. For information about the
scope of local and global variables, see “Scope of Variables and Properties” (page 60).

Examples
For examples and related conceptual information, see “Handlers with Positional Parameters” (page 86).

Calling a Handler with Positional Parameters

A call for a handler with positional parameters must list the parameters in the same order as they are specified
in the handler definition.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

281

Handler Reference

Syntax

handlerName ([paramValue [, paramValue 1..])

Placeholders
handlerName
An identifier that names the handler.

paramValue
The value of a parameter, which can be any valid expression. If there are two or more parameters, they
must be listed in the same order in which they were specified in the handler definition.

Examples
For examples, see “Handlers with Positional Parameters” (page 86)

Discussion

When you call a handler with positional parameters, you supply the following:

1. The handler name.

2. An opening and closing parenthesis.

3. If the handler has any parameters, then you also list, within the parentheses, the following:

One value for each parameter defined for the handler. The value can be any valid expression.

Handler Syntax (Interleaved Parameters)

A handler is a collection of statements that can be invoked by name. This section describes the syntax for
handlers that use interleaved parameters.

Syntax
on | tohandlerNamePart :userParamName [namePart:userParamName 1]...)
[statement]...

end [handlerName]

Placeholders
handlerNamePart, namePart
An identifier that, combined with the other parts, forms the handler name.

userParamName
An identifier for a user-defined parameter variable.

statement
Any AppleScript statement, including global or local variable declarations. For information about the
scope of local and global variables, see “Scope of Variables and Properties” (page 60).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

282

Handler Reference

Examples
For examples and related conceptual information, see “Handlers with Interleaved Parameters” (page 88).

Calling a Handler with Interleaved Parameters

A call for a handler with interleaved parameters must list the parameters in the same order as they are specified
in the handler definition.

Syntax

(tell scriptObject to | scriptObject's | my) handlerNamePart paramValue [namePart.paramValue 1..]

Placeholders
scriptObject
A script object to direct the handler call to, which can be any valid expression.

handlerNamePart, namePart
An identifier that names the handler.

paramValue
The value of a parameter, which can be any valid expression. If there are two or more parameters, they
must be listed in the same order in which they were specified in the handler definition.

Examples
For examples, see “Handlers with Positional Parameters” (page 86)

Discussion
When you call a handler with positional parameters, you supply the following:

1. Ascript object to direct the handler call to, either using te 11 script to, script ' s, or my, equivalentto tell
me to.

2. The first handler name part.
3. A value for the first parameter.
4. For each additional parameter, you also list the following:

The next name part, followed by a colon and a value for that parameter. The value can be any valid
expression.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

283

Folder Actions Reference

Folder Actions is a feature of OS X that lets you associate AppleScript scripts with folders. A Folder Action script
is executed when the folder to which it is attached is opened or closed, moved or resized, or has items added
or removed. The script provides a handler that matches the appropriate format for the action, as described in
this chapter.

Folder Actions make it easy to create hot folders that respond to external actions to trigger a workflow. For
example, you can use a Folder Action script to initiate automated processing of any photo dropped in a targeted
folder. A well written Folder Action script leaves the hot folder empty. This avoids repeated application of the
action to the same files, and allows Folder Actions to perform more efficiently.

You can Control-click a folder to access some Folder Action features with the contextual menu in the Finder.
Or you can use the Folder Actions Setup application, located in /Applications/AppleScript. This application
lets you perform tasks such as the following:

* Enable or disable Folder Actions.

* View the folders that currently have associated scripts

* View and edit the script associated with a folder.

* Add folders to or remove folders from the list of folders.

® Associate one or more scripts with a folder.

* Enable or disable all scripts associated with a folder.

* Enable or disable individual scripts associated with a folder.

* Remove scripts associated with a folder.

Folder Actions Setup looks for scripts located in /Library/Scripts/Folder Action Scripts and
~/Library/Scripts/Folder Action Scripts. You can use the sample scripts located in
/Library/Scripts/Folder Action Scripts orany scripts you have added to these locations, or you
can navigate to other scripts.

A Folder Action script provides a handler (see “Handler Reference” (page 275)) that is invoked when the specified
action takes place. When working with Folder Action handlers, keep in mind that:

* You do not invoke Folder Actions directly. Instead, when a triggering action takes place on a folder, the
associated handler is invoked automatically.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

284

Folder Actions Reference

* When a Folder Action handler is invoked, none of the parameters is optional.

e A Folder Action handler does not return a value.

Here's how you can use a Folder Action script to perform a specific action whenever an image file is dropped
on a specific image folder:

1. Create a script with Script Editor or another script application.

2. In that script, write a handler that conforms to the syntax documented here for the “adding folder
items to” (page 285) folder action. Your handler can use the aliases that are passed to it to access the
image files dropped on the folder.

3. Save the script as a compiled script or script bundle.

4. Puta copy of the scriptin /Library/Scripts/Folder Action Scriptsor
~/Library/Scripts/Folder Action Scripts.

5. Use the Folder Actions Setup application, located in /Applications/AppleScript, to:
a. Enable folder actions for your image folder.

b. Add a script to that folder, choosing the script you created.

adding folder items to
A script handler that is invoked after items are added to its associated folder.

Syntax
on adding folder items toalias after receiving listOfAlias
[statement]...

end[adding folder items to]

Placeholders
alias
An alias (page 98) that identifies the folder that received the items.

listOfAlias
List of aliases that identify the items added to the folder.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when items are added to the folder to which it is attached. It
makes an archived copy, in ZIP format, of the individual items added to the attached folder. Archived files are
placed in a folder named Done within the attached folder.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

285

Folder Actions Reference

on adding folder items to this_folder after receiving these_items
tell application "Finder"
if not (exists folder "Done" of this_folder) then
make new folder at this_folder with properties {name:"Done"}
end if
set the destination_folder to folder "Done" of this_folder as alias
set the destination_directory to POSIX path of the destination_folder
end tell
repeat with i from 1 to number of items in these_items
set this_item to item i of these_items
set the item_info to info for this_item
if this_item is not the destination_folder and -
the name extension of the item_info is not in {"zip", "sit"} then
set the item_path to the quoted form of the POSIX path of this_item
set the destination_path to the quoted form of -
(destination_directory & (name of the item_info) & ".zip")
do shell script ("/usr/bin/ditto -c -k -rsrc ——keepParent " -
& item_path & " " & destination_path)
end if
end repeat

end adding folder items to

closing folder window for

A script handler that is invoked after a folder’s associated window is closed.
Syntax

on closing folder window for alias

[statement]...

end[closing folder window for]

Placeholders
alias
An alias (page 98) that identifies the folder that was closed.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

286

Folder Actions Reference

statement
Any AppleScript statement.

Examples
The following Folder Action handler is triggered when the folder to which it is attached is closed. It closes any
open windows of folders within the targeted folder.

—— This script is designed for use with 0S X v10.2 and later.
on closing folder window for this_folder
tell application "Finder"
repeat with EachFolder in (get every folder of folder this_folder)
try
close window of EachFolder
end try
end repeat
end tell

end closing folder window for

moving folder window for

A script handler that is invoked after a folder’s associated window is moved or resized. Not currently available.

Syntax
on moving folder window for alias frombounding rectangle
[statement 1...

end[moving folder window for]

Placeholders
alias
An alias (page 98) that identifies the folder that was moved or resized.

You can use this alias to obtain the folder window’s new coordinates from the Finder.

bounding rectangle
The previous coordinates of the window of the folder that was moved or resized. The coordinates are
provided as a list of four numbers, {left, top, right, bottom}; for example, {10, 50, 500, 300} for a window
whose origin is near the top left of the screen (but below the menu bar, if present).

statement
Any AppleScript statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

287

Folder Actions Reference

Examples

on moving folder window for this_folder from original_coordinates
tell application "Finder"
set this_name to the name of this_folder
set the bounds of the container window of this_folder -
to the original_coordinates
end tell

display dialog "Window \"" & this_name & "\" has been returned to it's original
size and position." buttons {"OK"} default button 1

end moving folder window for

Special Considerations

0\ Warning: In OS X v10.5, and possibly in previous OS versions, Folder Actions does not activate attached

moving folder window for scripts when the folder is moved.

opening folder
A script handler that is invoked when its associated folder is opened in a window.

Syntax
on opening folderalias
[statement]...

end [opening folder]

Placeholders
alias
An alias (page 98) that identifies the folder that was opened.

statement
Any AppleScript statement.

Examples

The following Folder Action handler is triggered when the folder it is attached to is opened. It displays any
text from the Spotlight Comments field of the targeted folder. (Prior to OS X v10.4, this script displays text from
the Comments field of the specified folder.)

—— This script is designed for use with 0S X v10.2 and later.

property dialog_timeout : 30 —— set the amount of time before dialogs auto-answer.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

288

Folder Actions Reference

on opening folder this_folder
tell application "Finder"
activate
set the alert_message to the comment of this_folder
if the alert_message is not "" then

display dialog alert_message buttons {'"Open Comments", "Clear Comments",
"OK"} default button 3 giving up after dialog_timeout

set the user_choice to the button returned of the result
if the user_choice is "Clear Comments" then
set comment of this_folder to ""
else if the user_choice is "Open Comments'" then
open information window of this_folder
end if
end if

end tell

end opening folder

Special Considerations
Spotlight was introduced in OS X v10.4. In prior versions of the Mac OS, the example script shown above works
with the Comments field of the specified folder, rather than the Spotlight Comments field.

removing folder items from
A script handler that is invoked after items have been removed from its associated folder.

Syntax
on removing folder items fromalias after losinglistOfAliasOrText
[statement]...

end [removing folder items from]

Placeholders
alias
An alias (page 98) that identifies the folder from which the items were removed.

listOfAliasOrText
List of aliases that identify the items lost (removed) from the folder. For permanently deleted items, only
the names are provided (as text strings).

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

289

Folder Actions Reference

statement
Any AppleScript statement.

Examples
The following Folder Action handler is triggered when items are removed from the folder to which it is attached.
It displays an alert containing the number of items removed.

on removing folder items from this_folder after losing these_items
tell application "Finder"
set this_name to the name of this_folder
end tell
set the item_count to the count of these_items

display dialog (item_count as text) & " items have been removed " & "from
folder \"" & this_name & "\"." buttons {"OK"} default button 1

end removing folder items from

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

290

AppleScript Keywords

This appendix lists AppleScript keywords (or reserved words), provides a brief description for each, and points

to related information, where available. (See also “Keywords” (page 17) in “AppleScript Lexical

Conventions” (page 16).)

The keywords in Table A-1 (page 291) are part of the AppleScript language. You should not attempt to reuse
them in your scripts for variable names or other purposes. Developers should not re-define keywords in the
terminology for their scriptable applications. You can view many additional scripting terms defined by Apple,

but not part of the AppleScript language, in AppleScript Terminology and Apple Event Codes.

Table A-1 AppleScript reserved words, with descriptions

about
above

after

against
and

apart from
around

as

aside from
at

back

handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)
handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 277)

used to describe position in the “Relative” (page 224) reference form; used as part
of operator (comes after,does not come after) with classes such as
date (page 106), integer (page 110), and text (page 123)

handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 277)
logical and operator—see Table 9-1 (page 226)

handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)
handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)
coercion operator—see Table 9-1 (page 226)

handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)
handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

used with “Index” (page 218) and “Relative” (page 224) reference forms; in back
of is synonymous with after and behind

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

291

http://developer.apple.com/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

AppleScript Keywords

before used to describe position in the “Relative” (page 224) reference form; used as an
operator (comes before, does not come before) with classes such as
date (page 106), integer (page 110), and text (page 123); synonymous with in
front of

beginning specifies an insertion location at the beginning of a container—see the boundary
specifier descriptions for the “Range” (page 222) reference form

behind synonymous with after and in back of

below handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

beneath handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 277)

beside handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

between handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

but used in “considering and ignoring Statements” (page 244)

by used with binary containment operator contains, is contained by (page 239);
also used as handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 277)

considering a control statement—see “considering and ignoring Statements” (page 244)

contain, binary containment operator—see contains, is contained by (page 239)

contains

continue changes the flow of execution—see “continue” (page 275)

copy an AppleScript command—see copy (page 153)

div division operator—see Table 9-1 (page 226)

does used with operators such as does not equal, does not come before,and
does not contain—see Table 9-1 (page 226)

eighth specifies a position in a container—see “Index” (page 218) reference form

else used with if control statement—see “if Statements ” (page 250)

end marks the end of a script or handler definition, or of a compound statement,

such as a tell or repeat statement; also specifies an insertion location at the
end of a container—see the boundary specifier descriptions for the “Range” (page
222) reference form

equal, equals

binary comparison operator—see equal, is not equal to (page 240)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

292

AppleScript Keywords

error error (page 249) control statement; also used withtry (page 262) statement

every specifies every object in a container—see “Every” (page 213) reference form

exit terminates a repeat loop—see exit (page 252)

false a Boolean literal—see “Boolean” (page 20)

fifth specifies a position in a container—see “Index” (page 218) reference form

first specifies a position in a container—see “Index” (page 218) reference form

for handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

fourth specifies a position in a container—see “Index” (page 218) reference form

from used in specifying a range of objects in a container—see “Range” (page 222)
reference form; also used as handler parameter label—see “Handler Syntax
(Labeled Parameters)” (page 277)

front in front of is used to describe position in the “Relative” (page 224) reference
form; synonymous with before

get an AppleScript command—see get (page 164)

given a special handler parameter label—see “Handler Syntax (Labeled
Parameters)” (page 277)

global specifies the scope for a variable (see also Local)—see “Global Variables” (page
56)

if a control statement—see “if Statements ” (page 250)

ignoring a control statement—see “considering and ignoring Statements” (page 244)

in used in construction object specifiers—see “Containers” (page 31); also used
with the “Relative” (page 224) reference form—for example in front of and
in back of

instead of handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

into put intoisadeprecated synonym forthe copy (page 153) command; also used
as handler parameter label—see “Handler Syntax (Labeled Parameters)” (page
277)

is used with various comparison operators—see Table 9-1 (page 226)

it refers to the current target (of it)—see “The it and me Keywords” (page 45)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

293

AppleScript Keywords

its synonym for of it—see “The it and me Keywords” (page 45)

last specifies a position in a container—see “Index” (page 218) reference form

local specifies the scope for a variable (see also global)—see “Local Variables” (page
55)

me refers to the current script (of me)—see “The it and me Keywords” (page 45)

middle specifies a position in a container—see “Index” (page 218) reference form

mod remainder operator—see Table 9-1 (page 226)

my synonym for of me—see “The it and me Keywords” (page 45)

ninth specifies a position in a container—see “Middle” (page 220) reference form

not logical negation operator—see Table 9-1 (page 226)

of used in construction object specifiers—see “Containers” (page 31); used with or
as part of many other terms, including of me, in front of,and soon

on handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

onto handler parameter label—see “Handler Syntax (Labeled Parameters)” (page 277)

or logical or operator—see Table 9-1 (page 226)

out of handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

over handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)

prop, property

prop is an abbreviation for property—see “The it and me Keywords” (page
45)

put put into is a deprecated synonym for the copy (page 153) command
ref/reference ref is an abbreviation for reference—see reference (page 120)
repeat a control statement—see “repeat Statements” (page 252)

return exits from a handler—see “return” (page 276)

returning deprecated

script used to declare a script object; also the class of a script object—see the

script (page 121) class and “Script Objects” (page 68)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

294

AppleScript Keywords

second specifies a position in a container—see “Index” (page 218) reference form

set an AppleScript command—see set (page 197)

seventh specifies a position in a container—see “Index” (page 218) reference form
since handler parameter label —see “Handler Syntax (Labeled Parameters)” (page 277)
sixth specifies an index position in a container—see “Index” (page 218) reference form
some specifies an object in a container—see “Arbitrary” (page 212) reference form
tell a control statement—see “tell Statements” (page 260)

tenth specifies a position in a container—see “Index” (page 218) reference form
that synonym for whose

the syntactic no-op, used to make script statements look more like natural language
then used with if control statement—see “if Statements ” (page 250)

third specifies a position in a container—see “Index” (page 218) reference form

through, thru

used in specifying a range of objects in a container—see “Range” (page 222)
reference form

timeout used with with timeout control statement—see with timeout (page 272)

times used with repeat control statement—see repeat (number) times (page 254)

to used in many places, including copy (page 153) and set (page 197) commands;
in the “Range” (page 222) reference form; by operators such as is equal to
anda reference to;with the control statement repeat with loopVariable
(from startValue to stopValue) (page 256); with the partial result parameter
in “try Statements” (page 262)

transaction used withwith transaction control statement—seewith transaction (page
273)

true a Boolean literal—see “Boolean” (page 20)

try an error-handling statement—see “try Statements” (page 262)

until used with repeat control statement—see repeat until (page 254)

use a requirement statement—see “use Statements” (page 265)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

295

AppleScript Keywords

where

while

whose

with

without

used with the “Filter” (page 214) reference form to specify a Boolean test
expression (synonymous with whose)

used with repeat control statement—see repeat while (page 255)

used with the “Filter” (page 214) reference form to specify a Boolean test
expression (synonymous with where)

used in commands to specify various kinds of parameters, including true for
some Boolean for parameters—see, for example, the with prompt and
multiple selections allowed parameterstothe choose from list (page
147) command; also used with application make commands to specify properties
(with properties)

used in commands to specify false for a Boolean for a parameter—see, for
example, themultiple selections allowed parameterto the choose from
list (page 147) command

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

296

Error Numbers and Error Messages

This appendix describes error numbers and error messages provided by AppleScript, as well as certain Mac OS
error numbers that may be of interest to scripters.

AppleScript Errors

An AppleScript error is an error that occurs when AppleScript processes script statements. Nearly all of these
are of interest to users. For errors returned by an application, see the documentation for that application.

Table B-1 AppleScript errors

Error number Error message

-2700 Unknown error.

-2701 Can't divide <number> by zero.

-2702 The result of a numeric operation was too large.

-2703 <reference> can't be launched because it is not an application.
-2704 <reference> isn't scriptable.

-2705 The application has a corrupted dictionary.

-2706 Stack overflow.

-2707 Internal table overflow.

-2708 Attempt to create a value larger than the allowable size.

-2709 Can't get the event dictionary.

-2720 Can't both consider and ignore <attribute>.

-2721 Can't perform operation on text longer than 32K bytes.

-2729 Message size too large for the 7.0 Finder.

-2740 A <language element> can't go after this <language element>.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

297

Error Numbers and Error Messages
Operating System Errors

Error number Error message

-2741 Expected <language element> but found <language element>.
-2750 The <name> parameter is specified more than once.

-2751 The <name> property is specified more than once.

-2752 The <name> handler is specified more than once.

-2753 The variable <name> is not defined.

-2754 Can't declare <name> as both a local and global variable.
-2755 Exit statement was not in a repeat loop.

-2760 Tell statements are nested too deeply.

-2761 <name> is illegal as a formal parameter.

-2762 <name> is not a parameter name for the event <event>.
-2763 No result was returned for some argument of this expression.

Operating System Errors

An operating system error is an error that occurs when AppleScript or an application requests services from
the Mac OS. They are rare, and often there is nothing you can do about them in a script, other than report
them. A few, such as "User canceled", make sense for scripts to handle—as shown, for an example, in the
Examples section for the display dialog (page 158) command.

Table B-2 Mac OS errors

Error number Error message

0 No error.

-34 Disk <name> full.

-35 Disk <name> wasn't found.
-37 Bad name for file

-38 File <name> wasn't open.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

298

Error Numbers and Error Messages

Operating System Errors

Error number

-108

-120

-124

-128

-192

-600

-601

-602

-605

-606

-607

-608

Error message

End of file error.

Too many files open.

File <name> wasn't found.

Disk <name> is write protected.
File <name> is locked.

Disk <name> is locked.

File <name> is busy.

Duplicate file name.

File <name> is already open.
Parameter error.

File reference number error.

File not open with write permission.
Out of memory.

Folder <name> wasn't found.

Disk <name> is disconnected.

User cancelled.

A resource wasn't found.
Application isn't running

Not enough room to launch application with special requirements.
Application is not 32-bit clean.
More memory needed than is specified in the size resource.
Application is background-only.
Buffer is too small.

No outstanding high-level event.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

299

Error Numbers and Error Messages

Operating System Errors

Error number

-609

-904

-905

-906

-915

-30720

Error message

Connection is invalid.

Not enough system memory to connect to remote application.
Remote access is not allowed.

<name> isn't running or program linking isn’t enabled.

Can't find remote machine.

Invalid date and time <date string>.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

300

Working with Errors

This appendix provides a detailed example of handling errors with “try Statements” (page 262) and “error
Statements” (page 248). It shows how to use a try statement to check for bad data and other errors, and an
error statement to pass on any error that can’t be handled. It also shows how to check for just a particular
error number that you are interested in.

Catching Errors in a Handler

The SumIntegerList handler expects a list of integers. If any item in the passed list is not an integer,
SumIntegerlList signals error number 750 and returns 0. The handler includes an error handler that
displays a dialog if the error number is equal to 750; if the error number is not equal to 750, the handler resignals
the error with an error statement so that other statements in the call chain can handle the unknown error.
If no statement handles the error, AppleScript displays an error dialog and execution stops.

on SumIntegerList from itemList
try
—— Initialize return value.
set integerSum to @
—-- Before doing sum, check that all items in list are integers.
if ((count items in itemList) is not equal to -
(count integers in itemList)) then
—— If all items aren’t integers, signal an error.
error number 750
end if
—-— Use a repeat statement to sum the integers in the list.
repeat with currentItem in itemList
set integerSum to integerSum + currentItem
end repeat
return integerSum —- Successful completion of handler.
on error errStr number errorNumber

—— If our own error number, warn about bad data.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

301

Working with Errors
Catching Errors in a Handler

if the errorNumber is equal to 750 then
display dialog "All items in the 1list must be integers."
return integerSum —— Return the default value (0).

else
—— An unknown error occurred. Resignal, so the caller
—— can handle it, or AppleScript can display the number.
error errStr number errorNumber

end if

end try

end SumIntegerList

The SumIntegerlList handler handles various error conditions. For example, the following call completes
without error:

set sumList to {1, 3, 5}

set listTotal to SumIntegerList from sumList ——result: 9

The following call passes bad data—the list contains an item that isn't an integer:

set sumList to {1, 3, 5, "A"}
set listTotal to SumIntegerList from sumList
if listTotal is equal to @ then
—— the handler didn’t total the list;
—— do something to handle the error (not shown)

end if

The SumIntegerlList routine checks the list and signals an error 750 because the list contains at least one
non-integer item. The routine’s error handler recognizes error number 750 and puts up a dialog to describe
the problem. The SumIntegerList routine returns 0. The script checks the return value and, if it is equal to
0, does something to handle the error (not shown).

Suppose some unknown error occurs while SumIntegerList is processing the integer list in the previous
call. When the unknown error occurs, the SumIntegerList error handler calls the error command to resignal
the error. Since the caller doesn't handle it, AppleScript displays an error dialog and execution halts. The
SumIntegerlList routine does not return a value.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

302

Working with Errors
Simplified Error Checking

Finally, suppose the caller has its own error handler, so that if the handler passes on an error, the caller can
handle it. Assume again that an unknown error occurs while SumIntegerlList is processing the integer list.

try
set sumList to {1, 3, 5}
set listTotal to SumIntegerList from sumList
on error errMsg number errorNumber
display dialog "An unknown error occurred: " & errorNumber as text

end try

In this case, when the unknown error occurs, the SumIntegerList error handler calls the error command
to resignal the error. Because the caller has an error handler, it is able to handle the error by displaying a dialog
that includes the error number. Execution can continue if it is meaningful to do so.

Simplified Error Checking

AppleScript provides a mechanism to streamline the way you can catch and handle individual errors. It is often
necessary for a script to handle a particular error, but not others. It is possible to catch an error, check for the
error number you are interested in, and use an error statement to resignal for other errors. For example:

try
open for access file "MyFolder:AddressData" with write permission
on error msg number n from f to t partial result p
if n = -49 then —— File already open error
display dialog "I'm sorry but the file is already open."
else
error msg number n from f to t partial result p
end if

end try

This script tries to open a file with write permission, but if the file is already opened, it just displays a dialog.
However, you can instead implement this more concisely as:

try
open for access file "MyFolder:AddressData" with write permission

on error number -49

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

303

Working with Errors
Simplified Error Checking

display dialog "I'm sorry but the file is already open."

end try

In this version, there is no need to list the message, from, to, or partial result parameters, in order to
pass them along. If the error is not -49 (file <name> is already open), this error handler will not catch the error,
and AppleScript will pass the error to the next handler in an outer scope.

One drawback to this approach is that you must use a literal constant for the error number in the on error
parameter list. You can't use global variable or property names because the number must be known when the
script is compiled.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

304

Double Angle Brackets

When you type English language script statements in a Script Editor script window, AppleScript is able to
compile the script because the English terms are described either in the terminology built into the AppleScript
language or in the dictionary of an available scriptable application or scripting addition. When AppleScript
compiles your script, it converts it into an internal executable format, then reformats the text to conform to
settings in Script Editor’s Formatting preferences.

When you open, compile, edit, or run scripts with Script Editor, you may occasionally see terms enclosed in
double angle brackets, or chevrons («»). For example, you might see the term «event sysodlog» as part of
a script—this is the event code representation for a display dialog (page 158) command. The event code
representation is also known as raw format.

For compatibility with Asian national encodings, “llahd “late allowed as synonyms for “«” and “»” ((Option- \
and Option-Shift- \, respectively, on a U.S. keyboard), since the latter do not exist in some Asian encodings.

The following sections provide more information about when chevrons appear in scripts.

When a Dictionary Is Not Available

AppleScript uses double angle brackets in a Script Editor script window when it can't identify a term. That
happens when it encounters a term that isn’t part of the AppleScript language and isn’t defined in an application
or scripting addition dictionary that is available when the script is opened or compiled.

For example, if a script is compiled on one machine and later opened on another, the dictionary may not be
available, or may be from an older version of the application or scripting addition that does not support the
term.

This can also happen if the file StandardAdditions.osaxis not presentin /System/ScriptingAdditions.
Then, scripting addition commands such as display dialog will not be present and will be replaced with
chevron notation («event sysodlog») when you compile or run the script.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

305

Double Angle Brackets
When AppleScript Displays Data in Raw Format

When AppleScript Displays Data in Raw Format

Double angle brackets can also occur in results. For example, if the value of a variable isa script object named
Joe, AppleScript represents the script object as shown in this script:

script Joe
property theCount : 0

end script

set scriptObjectJoe to Joe
scriptObjectloe

——result: «script Joe»

Similarly, if Script Editor can't display a variable’s data directly in its native format, it uses double angle brackets
to enclose both the word data and a sequence of numerical values that represent the data. Although this may
not visually resemble the original data, the data’s original format is preserved.

This may occur because an application command returns a value that does not belong to any of the normal
AppleScript classes. You can store such data in variables and send them as parameters to other commands,
but Script Editor cannot display the data in its native format.

Entering Script Information in Raw Format

You can enter double angle brackets, or chevrons («»), directly into a script by typing Option-Backslash and
Shift-Option-Backslash. You might want to do this if you're working on a script that needs to use terminology
that isn’t available on your current machine—for example, if you're working at home and don't have the latest
dictionary for a scriptable application you are developing, but you know the codes for a supported term.

You can also use AppleScript to display the underlying codes for a script, using the following steps:

1. Create a script using standard terms compiled against an available application or scripting addition.

2. Save the script as text and quit Script Editor.

3. Remove the application or scripting addition from the computer.

4. Open the script again and compile it.

5. When AppleScript asks you to locate the application or scripting addition, cancel the dialog.

Script Editor can compile the script, but displays chevron format for any terms that rely on a missing dictionary.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

306

Double Angle Brackets
Sending Raw Apple Events From a Script

Sending Raw Apple Events From a Script

The term «event sysodlog» is actually the raw form for an Apple event with event class 'syso' and event
ID 'dlog' (the display dialog command). For a list of many of the four-character codes and their related
terminology used by Apple, see AppleScript Terminology and Apple Event Codes Reference .

You can use raw syntax to enter and execute events (even complex events with numerous parameters) when
there is no dictionary to support them. However, providing detailed documentation for how to do so is beyond

the scope of this guide.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

307

Libraries using Load Script

OS X Mavericks v10.9 (AppleScript 2.3) introduces built-in support for script libraries, which are scripts containing
handlers that may be shared among many scripts. Scripts that must run on older versions of the OS can share
handlers between scripts using load script, as described here.

Saving and Loading Libraries of Handlers

In addition to defining and calling handlers within a script, you can access handlers from other scripts. To make
a handler available to another script, save it as a compiled script, then use the load script (page 172) command
to load it in any script that needs to call the handler. You can use this technique to create libraries containing
many handlers.

Note: The load script command loads the compiled script as a script object; for more
information, see “Script Objects” (page 68).

For example, the following script contains two handlers: areaOfCircle and factorial:

—— This handler computes the area of a circle from its radius.
—— (The area of a circle is equal to pi times its radius squared.)
on areaOfCircle from radius
—— Make sure the parameter is a real number or an integer.
if class of radius is contained by {integer, real}
return radius * radius * pi —— pi is predefined by AppleScript.
else
error "The parameter must be a real number or an integer"
end if

end areaOfCircle

—— This handler returns the factorial of a number.

on factorial(x)

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

308

Libraries using Load Script
Saving and Loading Libraries of Handlers

set returnval to 1
if x > 1 then
repeat with n from 2 to x
set returnVal to returnVal x n
end repeat
end if
return returnVal

end factorial

In Script Editor, save the script as a compiled Script (which has extension scpt) or Script Bundle (extension
scptd) and name it “NumberLib”.

After saving the script as a compiled script, other scripts can use the load script command to load it. For
example, the following script loads the compiled scriptNumberLib. scpt, storing the resulting script object
in the variable numberLib. It then makes handler calls within a te 11 statement that targets the script object.
The compiled script must exist in the specified location for this script to work.

set numberLibrary to (load script file "NumberLib.scpt")

tell numberLibrary

factorial(10) —result: 3628800
area0OfCircle from 12 ——result: 452.38934211693
end tell

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

309

Unsupported Terms

This appendix lists scripting terms that are not supported by AppleScript. Though you may see these terms in
a dictionary, script, or scripting addition, you should not count on their behavior.

List of Unsupported Terms

handle CGI request
This command is not supported.

internet address
An Internet or intranet address for the TCP/IP protocol. Only used for compatibility with WebSTAR
AppleScript CGl scripts, this term is not supported by AppleScript itself.

web page
An HTML page. This class is not supported.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

310

Document Revision History

This table describes the changes to AppleScript Language Guide.

Date Notes

2013-10-22 Updated for OS X Mavericks features.

2008-03-11 Updated to describe AppleScript features through OS X v10.5 and
AppleScript 2.0.

The previous release of AppleScript Language Guide was on May 5, 1999.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

3N

Glossary

absolute object specifier An object specifier that
has enough information to identify an object or
objects uniquely. For an object specifier to an
application object to be complete, its outermost
container must be the application itself. See relative
object specifier.

Apple event An interprocess message that
encapsulates a command in a form that can be
passed across process boundaries, performed, and
responded to with a reply event. When an
AppleScript script is executed, a statement that
targets a scriptable application may result in an
Apple event being sent to that application.

AppleScript A scripting language that makes
possible direct control of scriptable applications and
scriptable parts of OS X.

AppleScript command A script command provided
by AppleScript. AppleScript commands do not have
to be included in tell statements.

application command A command that is defined
by scriptable application to provide access to a
scriptable feature. An application command must
either be included in a tell statement or include
the name of the application in its direct parameter.

application object An object stored in an
application or its documents and managed by the
application.

arbitrary reference form A reference form that
specifies an arbitrary object in a container.

assignment statement A statement that assigns
avalue to a variable. Assignment statements use the
copy or set commands.

attribute A characteristic that can be considered
orignored in a considering or ignoring
statement.

binary operator An operator that derives a new
value from a pair of values.

boolean A logical truth value; see the boolean
class.

Boolean expression An expression whose value
can be either true or false.

chevrons See double angle brackets.

child script object A script object that inherits
properties and handlers from another object, called
the parent.

class (1) A category for objects that share
characteristics such as properties and elements and
respond to the same commands. (2) The label for
the AppleScript class property—a reserved word
that specifies the class to which an object belongs.

coercion The process of converting an object from
one class to another. For example, an integer value
can be coerced into a real value. Also, the software
that performs such a conversion. Also known as
object conversion.

command A word or series of words that requests
an action. See also handler.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Glossary

comment Text that remains in a script after
compilation but is ignored by AppleScript when the
script is executed.

compile In AppleScript, to convert a script from
the form typed into a script editor to a form that can
be used by AppleScript. The process of compiling a
script includes syntax and vocabulary checks. A script
is compiled when you first run it and again when
you modify it and then run it again, save it, or check
its syntax.

compiled script The form to which a script is
converted when you compile it.

composite value A value that contains other
values. Lists, records, and strings are examples of
composite values.

compound statement A statement that occupies

more than one line and contains other statements.
A compound statement begins with a reserved word
indicating its function and ends with the word end.
See also simple statement.

conditional statement See if statement.

considering statement A control statement that
lists a specific set of attributes to be considered when
AppleScript performs operations on strings or sends
commands to applications.

constant A reserved word with a predefined value;
see the constant class.

container An object that contains one or more
other objects, known as elements. You specify
containers with the reserved words of or in.

continuation character A character used in Script
Editor to extend a statement to the next line. With
a U.S. keyboard, you can enter this character by
typing Option-l (lower-case L).

continue statement A statement that controls
when and how other statements are executed.
AppleScript defines standard control statements
such as if, repeat, and while.

control statement A statement that causes
AppleScript to exit the current handler and transfer
execution to the handler with the same name in the
parent. A continue statement can also be used to
invoke an inherited handler in the local context.

current application The application that is using
the AppleScript component to compile and execute
scripts (typically, Script Editor).

current script The script currently being executed.

current target The object that is the current default
target for commands.

data A class used for data that do not belong to
any of the other AppleScript classes; see the data
class.

date A class that specifies a time, day of the month,
month, and year; see the date class.

declaration The first occurrence of a variable or
property identifier in a script. The form and location
of the declaration determine how AppleScript treats
the identifier in that script—for example, as a

property, global variable, or local variable.

default target The object that receives a command
if no object is specified or if the object is
incompletely specified in the command. Default (or
implicit) targets are specified in tell statements.

delegation The handing off of control to another
object. In AppleScript, the use of a continue
statement to call a handler in a parent object or the
current application.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

313

Glossary

dialect A version of the AppleScript language that
resembles a specific human language or
programming language. As of AppleScript 1.3,
English is the only dialect supported.

dictionary The set of commands, objects, and other
terminology that is understood by an application or
other scriptable entity. You can display an
application’s dictionary with Script Editor.

direct parameter The parameter immediately
following a command, which typically specifies the
object to which the command is sent.

double angle brackets Characters («») typically used
by AppleScript to enclose raw data. With a U.S.
keyboard, you can enter double angle brackets (also
known as chevrons) by typing Option-Backslash and
Shift-Option-Backslash.

element An object contained within another
object. An object can typically contain zero or more
of each of its elements.

empty list A list containing no items. See the list
class.

error expression An expression, usually a text
object, that describes an error.

error handler A collection of statements that are
executed in response to an error message. See the
try statement.

error message A message that is supplied by an
application, by AppleScript, or by OS X when an error
occurs during the handling of a command.

error number An integer that identifies an error.

evaluation The conversion of an expression to a
value.

every reference form A reference form that
specifies every object of a particular type in a
container.

exit statement A statement used in the body of a
repeat statement to exit the Repeat statement.

explicit run handler A handler at the top level of
a script object that begins with on run and ends
with end. A single script object can include an
explicit run handler or an implicit run handler, but
not both.

expression In AppleScript, any series of words that
has a value.

filter A phrase, added to a reference to a system
or application object, that specifies elements in a
container that match one or more conditions.

filter reference form A reference form that
specifies all objects in a container that match a
condition specified by a Boolean expression.

formal parameter See parameter variable.

global variable A variable that is available
anywhere in the script in which it is defined.

handler A collection of statements that can be

invoked by name. See also command.

identifier A series of characters that identifies a
value or handler in AppleScript. Identifiers are used
to name variables, handlers, parameters, properties,

and commands.

ID reference form A reference form that specifies
an object by the value of its ID property.

if statement A control statement that contains one
or more Boolean expressions whose results
determine whether to execute other statements
within the if statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

314

Glossary

ignoring statement A control statement that lists
a specific set of attributes to be ignored when
AppleScript performs operations on text strings or
sends commands to applications.

implicit run handler All the statements at the top
level of a script except for property definitions,
script object definitions, and other handlers. A
single script object can include an explicit run
handler or an implicit run handler, but not both.

index reference form A reference form that
specifies an object by describing its position with
respect to the beginning or end of a container.

inheritance The ability of a child script object to
take on the properties and handlers of a parent
object.

inheritance chain The hierarchy of objects that
AppleScript searches to find the target for a
command or the definition of a term.

initializing a script object The process of creating
a script object from the properties and handlers
listed in a script object definition. AppleScript
creates a script object when it runs a script or
handler that contains a script object definition.

insertion point A location where another object
or objects can be added.

integer A positive or negative number without a
fractional part; see the integer class.

item A value in a list or record. An item can be
specified by its offset from the beginning or end of
the list or record.

keyword A word that is part of the AppleScript
language. Synonymous with reserved word.

labeled parameter A parameter that is identified
by a label. See also positional parameter.

lifetime The period of time over which a variable
or property is in existence.

list An ordered collection of values; see the list
class.

literal A value that evaluates to itself.

local variable A variable that is available only in
the handler in which it is defined. Variables that are
defined within handlers are local unless they are
explicitly declared as global variables.

log statement A script statement that reports the
value of one or more variables to the Event Log pane
of a script window, and to the Event Log History
window, if it is open.

loop A series of statements that is repeated.

loop variable A variable whose value controls the
number of times the statements in a repeat
statement are executed.

middle reference form A reference form that
specifies the middle object of a particular class in a
container. (This form is rarely used.)

name reference form A reference form that
specifies an object by name—that is, by the value
of its name property.

nested control statement A control statement that
is contained within another control statement.

number A synonym for the AppleScript classes
integer and real.

object An instantiation of a class definition, which
can include properties and actions.

object conversion See coercion.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

315

Glossary

object specifier A phrase specifies the information
needed to find another object in terms of the objects
in which it is contained. See also absolute object

specifier, relative object specifier, and reference form.

operand An expression from which an operator
derives a value.

operation The evaluation of an expression that
contains an operator.

operator A symbol, word, or phrase that derives a
value from another value or pair of values.

optional parameter A parameter that need not be
included for a command to be successful.

outside property, variable, or statement A
property, variable, or statement in a script object
but occurs outside of any handlers or nested script
objects.

parameter variable An identifier in a handler
definition that represents the actual value of a
parameter when the handler is called. Also called a
formal parameter.

parent object An object from which another
script object, called the child, inherits properties
and handlers. A parent object may be any object,
suchasa list oran application object, butitis
typically another script object.

positional parameter A handler parameter that is
identified by the order in which it is listed. In a
handler call, positional parameters are enclosed in
parentheses and separated by commas. They must
be listed in the order in which they appear in the
corresponding handler definition.

property A labeled container in which to store a
value. Properties can specify characteristics of
objects.

property reference form A reference form that
specifies a property of an application object,
record or script object.

range reference form A reference form that
specifies a series of objects of the same class in the
same container.

raw format AppleScript terms enclosed in double
angle brackets, or chevrons («»). AppleScript uses
raw format because it cannot find a script term in
any available dictionary, or cannot display data in
its native format.

real A number that can include a decimal fraction;
see the real class.

record An unordered collection of properties,
identified by unique labels; see the record class.

recordable application An application that uses
Apple events to report user actions for recording
purposes. When recording is turned on, Script Editor
creates statements corresponding to any significant
actions you perform in a recordable application.

recursive handler A handler that calls itself.

reference An object that encapsulates an object
specifier.

reference form The syntax for identifying an object
or group of objects in an application or other
container—that is, the syntax for constructing an
object specifier. AppleScript defines reference forms
for arbitrary, every, filter, ID, index, middle, name,
property, range, and relative.

relative object specifier An object specifier that
does not include enough information to identify an
object or objects uniquely. When AppleScript
encounters a partial object specifier, it uses the

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Glossary

default object specified in the enclosing tell
statement to complete the reference. See absolute
object specifier.

relative reference form A reference form that
specifies an object or location by describing its
position in relation to another object, known as the
base, in the same container.

repeat statement A control statement that
contains a series of statements to be repeated and,
in most cases, instructions that specify when the
repetition stops.

required parameter A parameter that must be
included for a command to be successful.

reserved word A word that is part of the
AppleScript language. Synonymous with keyword.

result A value generated when a command is
executed or an expression evaluated.

return statement A statement that exits a handler
and optionally returns a specified value.

scope The range over which AppleScript recognizes
a variable or property, which determines where else
in a script you may refer to that variable or property.

script A series of written instructions that, when
executed, cause actions in applications or OS X.

scriptable application An application that can be
controlled by a script. For AppleScript, that means
being responsive to interapplication messages, called
Apple events, sent when a script command targets
the application.

script application An application whose only
function is to run the script associated with it.

script editor An application used to create and
modify scripts.

Script Editor The script-editing application
distributed with AppleScript.

scripting addition A file that provides additional
commands or coercions you can use in scripts. If a
scripting addition is located in the Scripting
Additions folder, its terminology is available for use
by any script.

scripting addition command A command that is
implemented as a scripting addition.

script library A script saved in a Script Libraries
folder so it can be used by other scripts.

script object A user-defined object that can
combine data (in the form of properties) and actions
(in the form of handlers and additional script
objects).

script object definition A compound statement
that contains a collection of properties, handlers,
and other AppleScript statements.

simple statement One that can be written on a
single line. See also compound statement.

simple value A value, such as an integer or a
constant, that does not contain other values.

Standard suite A set of standard AppleScript
terminology that a scriptable application should
support if possible. The Standard suite contains
commands such as count, delete, duplicate,
and make, and classes such as application,
document, and window.

statement A series of lexical elements that follows
a particular AppleScript syntax. Statements can
include keywords, variables, operators, constants,
expressions, and so on. See also compound
statement, simple statement.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Glossary

statement block One or more statements enclosed
in a compound statement and having an end
statement.

string A synonym for the text class.

styled text Text that may include style and font
information. Not supported in AppleScript 2.0.

suite Within an application's scriptability
information, a grouping of terms associated with
related operations.

synonym An AppleScript word, phrase, or language
element that has the same meaning as another
AppleScript word, phrase, or language element. For
example, the operator does not equalisa
synonym for =.

syntax The arrangement of words in an AppleScript
statement.

syntax description The rules for constructing a
valid AppleScript statement of a particular type.

system object An object that is part of a scriptable
element of OS X.

target The recipient of a command. Potential
targets include application objects, script
objects (including the current script), and the current
application.

tell statement A control statement that specifies
the default target for the statements it contains.

test A Boolean expression that specifies the
conditions of a filter or an if statement.

text An ordered series of characters (a text string);
see the text class.

try statement A two-part compound statement
that contains a series of AppleScript statements,
followed by an error handler to be invoked if any of
those statements cause an error.

unary operator An operator that derives a new
value from a single value.

Unicode An international standard that uses a
16-bit encoding to uniquely specify the characters
and symbols for all commonly used languages.

Unicode code point A unique number that
represents a character and allows it to be
represented in an abstract way, independent of how
it is rendered.

Unicode text A class that represents an ordered
series of two-byte Unicode characters.

use statement A control statement that declares a
required resource for a script and may import
terminology from that resource.

user-defined command A command that is
implemented by a handler defined ina script
object.

using terms from statement A control statement
that instructs AppleScript to use the terminology
from the specified application in compiling the
enclosed statements.

variable A named container in which to store a
value.

with timeout statement A control statement that
specifies the amount of time AppleScript waits for
application commands to complete before stopping
execution of the script.

with transaction statement A control statement
that allows you to take advantage of applications
that support the notion of a transaction—a sequence
of related events that should be performed as if they
were a single operation, such that either all of the
changes are applied or none are.

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

¢

Apple Inc.

Copyright © 2013 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, AppleScript
Studio, AppleShare, AppleTalk, Bonjour, Cocoa,
eMac, Finder, iTunes, iWork, Leopard, Logic, Mac,
Mac OS, Macintosh, Numbers, Objective-C, OS X,
Safari, Snow Leopard, and Spotlight are
trademarks of Apple Inc,, registered in the U.S.
and other countries.

Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

Index

Symbols

* operator 231

+ operator 232

/ operator 232

= operator 227

> operator 228

>= operator 229

& (concatenation) operator 236
& operator 227

& operator 236

< operator 228

<= operator 229

" character 126

\ character 126

~ operator 233

{} characters 112

| in identifiers 17

| in syntax definitions 15

A

a reference to operator 32,120, 234, 237
about handler parameter label 278
above handler parameter label 278
absolute object specifiers 32
activate command 136
adding folder items to Folder Actions handler
285
addition operator 232
addition
of date values 107
administrator privileges parameter
of command do shell script 164
after reserved word 224

against handler parameter label 278
alert volume parameter
of command set volume 202
alias class 98
alias
specifying a file by 47
aliases and files 47-50
aliases
working with 48
altering line endings parameter
of command do shell script 164
and operator 226
angle brackets in scripts 305-307

apart from handler parameter label 278

Apple event code 24
Apple events 12
AppleScript character set (Unicode) 16
AppleScript constant 41

AppleScript 41

current application 44
AppleScript global constants 41
AppleScript property

missing value 45

pi constant 41

result 41

text constants 42

text item delimiters 42

version 44
AppleScript suite 133
AppleScript

commands 38

constants 41

defined 12

error numbers 297,298

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Index

fundamentals 25-53
keywords 17,291-296
lexical conventions 16-24
script objects 68-82
unsupported terms 310
variables and properties 54-67
application class 99
application commands 38
application object 37
applications
remote 50
arbitrary reference form 212
arithmetic, date-time 107
around handler parameter label 278
as operator 34,233
as parameter
of command choose application 140
of command display alert 157
of command do shell script 163
of command get 165
of command path to (application) 181
of command path to (folder) 186
of command read 190
of command the clipboard 208
of command write 210
as user name parameter
of command mount volume 176
ASCII character command 137
ASCII number command 138
aside from handler parameter label 278
assignment statement 22
associativity, of operators 234
at handler parameter label 278

B

back of reserved words 224
back reserved word 219, 225
backslash character in text 126
beep command 139

before parameter
of command read 189
before reserved word 224
beginning reserved word 225
begins with operator 229
behind reserved word 224
below handler parameter label 278
beneath handler parameter label 278
beside handler parameter label 278
between handler parameter label 278
binary operator 226
Bonjour
and remote applications 50, 150
service types 150
boolean class 102
Boolean constants 20, 45, 103
boolean expressions 250
brackets 15
but keyword 244
buttons parameter
of command display alert 157
of command display dialog 159
by handler parameter label 278

C

cancel button name parameter
of command choose from list 148
cancel button parameter
of command display alert 157
of command display dialog 159
case attribute 245
character element 124
character
elements of a text object 124
chevrons 24,305
child script objects 76
choose application command 139
choose color command 141
choose file command 142

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

321

Index

choose file name command 144 concatenation operator (&) 227,236
choose folder command 145 considering / ignoring (application
choose from list command 147 responses) control statement 247
choose remote application command 149 considering / ignoring (text comparison)
choose URL command 150 control statement 244
class class 104 considering and ignoring statements 244
class property 98, 99, 102, 104, 105, 106, 111, 112, considering statements (application responses)
15, 117, 118, 121, 123, 130 247
class considering statements (string comparison) 244
defined 98 constant class 105
reference 98-131 constant
classes defined 20
mutable 57 constants
Clipboard Commands suite 133 AppleScript 41
clipboard info command 151 Boolean 20, 45, 103
close access command 152 days of the week 107
closing folder window for Folder Actions months of the year 107
handler 286 text 126
coercion operator (as) 233 white space 126
coercion constructor functions 71
see object conversion 34 containers 31
comes after operator 228 contains operator 230, 239
comes before operator 228 contains, is contained by operator 239
commands contents property 33,120
AppleScript 38 continue statement
application 38 defined 275
defined 133 in script objects 79
direct parameter of 39 control statements reference 244-274
reference 133-211 conventions in this book 14
scripting addition 38 copy command 153
target of 38 count command 154
user-defined 38 current application and parent property 44
waiting for completion of 272 current application constant 44
comments 19 current date command 155
block 19 current script 45
end-of-line 19 current target 45
completion
of commands 272 D

compound statements 23
date class 106

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

322

Index

date string property 107 does not come after operator 229
date, relative 109 does not come before operator 229
date-time arithmetic 107 does not contain operator 230

day property 106 does not equal operator 227

days of the week constants 107 double angle brackets 305-307
debugging tips 52 double-quote character 126

flow of control 52
log statements 52 E

third party debuggers 53

default answer parameter editable URL parameter

of command display dialog 159 of command choose URL 151

default button parameter eighth reserved word 218

of command display alert 157 elements of objects 29

of command display dialog 159 ellipsis in syntax definitions 15

default color parameter else clause 25

of command choose color 141 else if clause 252

default items parameter empty list 112

of command choose from list 147 empty selection allowed parameter

default location parameter of command choose from list 148

of command choose file 142 enabling remote applications 50
end reserved word 225

ends with operator 230, 242
eppc-style specifier 50

equal operator 240

of command choose file name 144

of command choose folder 145
default name parameter

of command choose file name 144

delay command 155 equal, is not equal to operator 240

delegation 79 equals operator 227

diacriticals attribute 245 error control statement 249

error numbers

dictionary .
defined 26 ADP|GSCFIpt 297,298
displaying 26 defined 248

when not available 305 error reporting parameter

direct parameter of commands 39 of command open location 180

display alert command 156 error
expression 248
handlers 262
handling 40

message 248

display dialog command 158
display notification command 162
displaying parameter

of command say 196

div operator 232 user cancelled 41

do shell script command 163 errors

resignaling in scripts 301

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

323

Index

signaling in scripts 248

types of 41

working with 301-304
evaluation

defined 22

of expressions 22
Event Log History window 265
event timed out error message 272
every reference form 213
every reserved word 213
exit control statement 252
exit from repeat loop 253
explicit run handlers 93
exponent operator (*) 233
expressions 22

boolean 250

evaluation of 22

F

false constant 45, 103
fifth reserved word 218
file class 110
File Commands suite 133
File Read/Write suite 134
files and aliases 47-50
files, specifying
by alias 47
by name 49
by pathname 49
filter reference form 214
first reserved word 218
Folder Actions reference 284-290
folder creation parameter
of command path to (folder) 186
for handler parameter label 278
for parameter
of command clipboard info 151
of command read 189
of command write 210

fourth reserved word 218
from handler parameter label 278
from parameter

of command path to (folder) 185

of command random number 187
of command read 189

from reserved word 223

from table parameter

of command localized string 173

front of reserved words 224
front reserved word 219, 225
frontmost property 99

G

get command 164
get eof command 166

get volume settings command 167

given handler parameter label 278
giving up after parameter
of command display alert 157
of command display dialog 160
global constants
of AppleScript 41
global variables 56, 60
persistence of 63
scope of 60
greater than operator 228, 241

greater than or equal to operator 229
greater than, less than operator 241

H

handle CGI request (unsupported) 310

handlers
call syntax
labeled parameters 279
positional parameters 281, 283
calling from a tell statement 91
defined 83

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

324

Index

defining simple 84
defining syntax
labeled parameters 277
no parameters 84
positional parameters 281, 282
errors in 90
for errors 262
for stay-open script applications 94-96
idle 95
in script applications 91
libraries of 308
open 94
overview 83-97
quit 96
recursive 89
reference 275-282
run 92
scope of identifiers declared within 65
has parameter
of command system attribute 205
hidden answer parameter
of command display dialog 159
hyphens attribute 245

id property 100, 122, 123

ID reference form 217

id reserved word 217

identifiers 17

idle handlers 95

if (compound) control statement 251
if (simple) control statement 250

ignoring statements (application responses) 247
ignoring statements (string comparison) 244

implicit run handlers 93
implicitly specified subcontainers 31
in AppleTalk zone parameter

of command mount volume 176
in back of reserved words 224

in bundle parameter

of command localized string 173

of command path to resource 186
in directory parameter

of command path to resource 187
in front of reserved words 224
in parameter

of command offset 177

of command run script 195

of command store script 203

of command summarize 204
in

for specifying a container 31

with date objects 109
index reference form 218
index reserved word 218
info for command 167
inheritance 75-82

examples of 76
initializing script objects 70-71
input volume parameter

of command set volume 201
insertion point 40
insertion point object

and index reference form 225

and relative reference form 224
instead of handler parameter label 278
integer class 110
integral division operator 232
internet address (unsupported) 310
Internet suite 134
into handler parameter label 278
invisibles parameter

of command choose file 143

of command choose folder 145

of command list folder 172
is contained by operator 231,239
is equal to operator 227
is not contained by operator 231

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Index

is not equal to operator 240

is not greater than operator 229
is not less than operator 229

is not operator 227

is operator 227

it keyword 45

item element 112

items 112, 121

its reserved word 45

K

keywords, AppleScript 17, 291

L

labeled parameters, of handlers 85
language elements in syntax definitions 15
large lists
inserting in 114
last reserved word 219
launch command 170
length property 112, 118, 124
less than operator 228, 241
less than or equal to operator 229
libraries of handlers 308
lifetime of variables and properties 60
linefeed constant 126
list class 112
list disks command 171
list folder command 171
lists
inserting in large 114
merging 114
literal expressions 20
load script command 172,308
local variables 55,60, 70
scope of 60
localized string command 172
location parameters 40

log command 175
log statements 52
loop variable 256, 257
lowercase letters 245

M

me keyword 45
merging lists 114
message parameter
of command display alert 157
middle reference form 220
middle reserved word 220
Miscellaneous Commands suite 134
missing value constant 45
mod operator 233
month property 107
months of the year constants 107
mount volume command 176
moving folder window for Folder Actions handler
287
multiple selections allowed parameter
of command choose application 140
of command choose file 143
of command choose folder 146
of command choose from list 148
multiplication operator (x) 231
mutable classes 57
my reserved word 80
my
in tell statements 91

N

name property 100, 122
name reference form 221
name

specifying a file by 49
named reserved word 221
nested tell statements 260

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Index

examples 262
ninth reserved word 218
not operator 233
number class 115
numeric literal 20

o)

object conversion (coercion) 34
object conversion
table of supported conversions 35
object specifiers 22,30
absolute 32
contents of 30
evaluating with contents property 33
implicitly specified subcontainers 31
in reference objects 32
relative 32
objects
elements of 29
properties of 29
script
initializing 70-71
parent 76-82
sending commands to 71
using in AppleScript 27
of me
in tell statements 91
of my keyword 45
of parameter
of command offset 177
of type parameter
of command choose file 142
of
for specifying a container 31
with date objects 109
offset command 177
OK button name parameter
of command choose from list 148
on handler parameter label 278

on server parameter

of command mount volume 176
onto handler parameter label 278
open for access command 178
open handlers 94
open location command 179

opening folder Folder Actions handler 288

operators

binary 226

defined 226

listed, with descriptions 226-234

precedence 234

reference 226-243

unary 226
or operator 226
out of handler parameter label 278
output muted parameter

of command set volume 202
output volume parameter

of command set volume 201
over handler parameter label 278

P

paragraph element 125
parameter variables 70, 275
parameters
direct 39
in continue statements 275
labeled 85
location 40
passing by reference versus value 90
patterned 87
positional 86, 88
parent property 76
parent script objects 76-82
password parameter
of command do shell script 164
path to (application) command 180
path to (folder) command 182

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

327

Index

path to resource command 186
pathname

specifying a file by 49
paths, specifying a file with 47
patterned parameters 87
persistence

of global variables 63

of script properties 62
pi constant 41
placeholders in syntax definitions 15
plural object names 213
plus symbol (+) 232
positional parameters, of handlers 86, 88
POSIX file class 116
POSIX files

using with files and aliases 40-50
POSIX path property 98
possessive notation ('s) 31
possessive object names 31
precedence

of attributes 246

of operations 234
properties

declaring 54

lifetime of 60

of objects 29

of script objects 69

scope of 60
property reference form 222
punctuation attribute 245
put, (Deprecated--use copy) 294

Q

quit handlers 96
quoted form property 124

R

random number command 187

range reference form 222
raw apple events 307
raw data
displayed by AppleScript 306
entering in a script 306
raw format 305
read command 188
real class 116
record class 118
recursion 89
recursive handlers 89
reference class 120
reference forms 212-225
arbitrary 212
defined 212
every 213
filter 214
ID 217
index 218
middle 220
name 221
property 222
range 222
relative 224
relative object specifiers 32
relative reference form 224
relative to
with date objects 109
remainder operator 233
remote applications 50
choosing 149
enabling 50
targeting 51
removing folder items from Folder Actions
handler 289
reopen command 171
repeat (forever) control statement 253
repeat (number) times control statement 254
repeat control statements 252

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

Index

repeat until control statement 254
repeat while control statement 255

repeat with loopVariable (from startValue

to stopValue) control statement 256

repeat with loopVariable (in list) control

statement 257

replacing parameter

of command store script 203
reserved words (see keywords) 291
rest of property 112
rest property 112
Result pane 24, 41
result property 41
result variable 24
result, of statement 24
return character

in text objects 127
return constant 126
return statement 276

in handler definition 83
returning, Deprecated reserved word 294
reverse property 112
RGB color class 121
round command 191
rounding parameter

of command round 192
run command 193
run handlers 92

explicit 93

implicit 93

in script objects 69, 72
run script command 194
running property 100
runTarget parameter

of command run 193

S

saving to parameter
of command say 196

say command 195
scope
of variables and properties 60
shadowing 61, 76
script applications 91
calling 96
handlers for 91
Mac OS 9 compatible 92
modern bundle format 92
startup screen in 92
stay-open 92
script class 121
Script Editor
Event Log History window 52, 265
location in system 25
overview 25
script objects 68-82
child 76
contents of 27
defined 68
initializing 70-71
parent 76-82
scope of identifiers declared at top level of 61
sending commands to 71
syntax of 68
script properties
persistence of 62
scope of 60
script, current 45
scripting addition
command 38
overview 36
scripting components command 196
Scripting suite 135
second reserved word 218
set command 197
set eof command 199
set the clipboard to command 200
set volume command 201

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

329

Index

seventh reserved word 218
short-circuiting, during evaluation 226
showing package contents parameter
of command choose file 143
of command choose folder 146
showing parameter
of command choose URL 150
simple statements 23
since handler parameter label 278
sixth reserved word 218
size parameter
of command info for 168
slash symbol (/) 232
some reserved word 212
sound name parameter

of command display notification 162

space constant 126
special characters
in identifiers 17
in text 126
Standard suite 135
starting at parameter
of command write 210
starts with operator 229, 242
starts with, ends with operator 242
startup screen in script applications 92
statements 23
compound 23
simple 23
stay-open script applications 92
store script command 202
storing values in variables 22
string class 129
String Commands suite 135
subtitle parameter

of command display notification 162

subtraction of date values 107
suites
AppleScript 133

Clipboard Commands 133

File Commands 133

File Read/Write 134

Internet 134

Miscellaneous Commands 134

Scripting 135

Standard 135

String Commands 135

User Interaction 136
summarize command 204
synonyms for whose 214
system attribute command 205
system info command 206

T

tab character
in text objects 127
tab constant 126
target, current 45
target
of commands 38
targeting remote applications 51
tell (compound) control statement 261
tell (simple) control statement 260
tell statements 39, 260
nested 260
nested, examples of 262
tenth reserved word 218
terminating
handler execution 276
repeat statement execution 252
test
Boolean 250
in filter reference form 214
text class 123
text element 125
text item delimiters
AppleScript property 42
text literal 21

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

330

Index

text of command read 189
as replacement for string 123 uppercase letters 245
constants 42, 126 use (AppleScript) control statement 266
special characters in 126 use (application or script) control statement
that reserved word 214 267
the clipboard command 208 use (framework) control statement 269
the reserved word (syntactic no-op) 295 use (scripting additions) control statement
then reserved word 251 266
third reserved word 218 user cancelled error 41
through handler parameter label 278 User Interaction suite 136
through reserved word 223 user name parameter
thru handler parameter label 278 of command do shell script 164
thru reserved word 223 user-defined commands 38
time property 107 using delimiter parameter
time string property 107 of command read 189
time to GMT command 208 using delimiters parameter
timeout, default value 271 of command read 189
times reserved word 254 using parameter
to parameter of command say 196
of command copy 153 using terms from control statement 270
of command random number 187
of command read 189 V
of command set 197
of command set eof 200 variables 22
declaring 55

of command write 209 ‘ ‘
transaction reserved word 273 declaring with copy command 59

true constant 45, 103 declaring with set command 57

try control statement 262 defined 22
try statements 262 global 56,60
lifetime of 60
local 55,60, 70
v scope of 60
unary operators 226 version property 44, 100, 122
under handler parameter label 278 vertical bar character (]) in identifiers 17
Unicode text class 129 vertical bars (|)
unit types class 130 in syntax definitions 15
Unix executable
making script into 19 w

unsupported terms 310

. waiting until completion parameter
until parameter g p p

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

331

Index

of command say 196 write permission parameter
web page (unsupported) 310 of command open for access 178
weekday property 106
where reserved word 214, 215 Y
while reserved word 256
white space attribute 245 year property 107
white space constants 126
whose reserved word 215
whose
synonyms for 214
with clause 280
with icon parameter
of command display dialog 160
with parameters parameter
of command run script 194
with password parameter
of command mount volume 176
with prompt parameter
of command choose application 140
of command choose file 142
of command choose file name 144
of command choose folder 145
of command choose from list 147
of command choose remote application 149
with seed parameter
of command random number 188
with timeout control statement 272
with timeout statements 271,273
with title parameter
of command choose application 140
of command choose from list 147
of command choose remote application 149
of command display dialog 160
of command display notification 162
with transaction control statement 273
without clause 280
word element 125
working with errors 301
write command 209

2013-10-22 | Copyright © 2013 Apple Inc. All Rights Reserved.

332

	AppleScript Language Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	AppleScript Lexical Conventions
	Character Set
	Identifiers
	Keywords
	Comments
	The Continuation Character
	Literals and Constants
	Boolean
	Constant
	List
	Number
	Record
	Text

	Operators
	Variables
	Expressions
	Statements
	Commands
	Results
	Raw Codes

	AppleScript Fundamentals
	Script Editor Application
	AppleScript and Objects
	What Is in a Script Object
	Properties
	Elements

	Object Specifiers
	What Is in an Object Specifier
	Containers
	Absolute and Relative Object Specifiers
	Object Specifiers in Reference Objects

	Coercion (Object Conversion)
	Scripting Additions
	Commands Overview
	Types of Commands
	Target
	Direct Parameter
	Parameters That Specify Locations

	AppleScript Error Handling
	Global Constants in AppleScript
	AppleScript Constant
	pi
	result
	Text Constants
	text item delimiters
	version

	current application Constant
	missing value Constant
	true, false Constants

	The it and me Keywords
	Aliases and Files
	Specifying Paths
	Working With Aliases
	Working With Files

	Remote Applications
	Enabling Remote Applications
	eppc-Style Specifiers
	Targeting Remote Applications

	Debugging AppleScript Scripts
	Feedback From Your Script
	Logging
	Third Party Debuggers

	Variables and Properties
	Defining Properties
	Declaring Variables
	Local Variables
	Global Variables
	Using the copy and set Commands
	Declaring Variables with the set Command
	Declaring Variables with the copy Command

	Scope of Variables and Properties
	Scope of Properties and Variables Declared in a Script Object
	Scope of Variables Declared in a Handler

	Script Objects
	Defining Script Objects
	Initializing Script Objects
	Sending Commands to Script Objects
	Script Libraries
	Creating a Library
	Defining Scripting Terminology
	Using Objective-C Frameworks

	Using a Library

	Inheritance in Script Objects
	The AppleScript Inheritance Chain
	Defining Inheritance Through the parent Property
	Some Examples of Inheritance
	Using the continue Statement in Script Objects

	About Handlers
	Handler Basics
	Defining a Simple Handler
	Handlers with Labeled Parameters
	Handlers with Positional Parameters
	Handlers with Patterned Positional Parameters
	Handlers with Interleaved Parameters
	Recursive Handlers
	Errors in Handlers
	Passing by Reference Versus Passing by Value
	Calling Handlers in a tell Statement

	Handlers in Script Applications
	run Handlers
	open Handlers
	idle and quit Handlers for Stay-Open Applications
	idle Handlers
	quit Handlers

	Calling a Script Application From a Script

	Class Reference
	alias
	application
	boolean
	class
	constant
	date
	file
	integer
	list
	number
	POSIX file
	real
	record
	reference
	RGB color
	script
	text
	unit types

	Commands Reference
	activate
	ASCII character
	ASCII number
	beep
	choose application
	choose color
	choose file
	choose file name
	choose folder
	choose from list
	choose remote application
	choose URL
	clipboard info
	close access
	copy
	count
	current date
	delay
	display alert
	display dialog
	display notification
	do shell script
	get
	get eof
	get volume settings
	info for
	launch
	list disks
	list folder
	load script
	localized string
	log
	mount volume
	offset
	open for access
	open location
	path to (application)
	path to (folder)
	path to resource
	random number
	read
	round
	run
	run script
	say
	scripting components
	set
	set eof
	set the clipboard to
	set volume
	store script
	summarize
	system attribute
	system info
	the clipboard
	time to GMT
	write

	Reference Forms
	Arbitrary
	Every
	Filter
	ID
	Index
	Middle
	Name
	Property
	Range
	Relative

	Operators Reference
	& (concatenation)
	text
	record
	All Other Classes

	a reference to
	Examples

	contains, is contained by
	list
	record
	text

	equal, is not equal to
	list
	record
	text

	greater than, less than
	date
	integer, real
	text

	starts with, ends with
	list
	text

	Control Statements Reference
	considering and ignoring Statements
	considering / ignoring (text comparison)
	considering / ignoring (application responses)

	error Statements
	error

	if Statements
	if (simple)
	if (compound)

	repeat Statements
	exit
	repeat (forever)
	repeat (number) times
	repeat until
	repeat while
	repeat with loopVariable (from startValue to stopValue)
	repeat with loopVariable (in list)

	tell Statements
	tell (simple)
	tell (compound)

	try Statements
	try

	use Statements
	use (AppleScript)
	use (scripting additions)
	use (application or script)
	use (framework)

	using terms from Statements
	using terms from

	with timeout Statements
	with timeout

	with transaction Statements
	with transaction

	Handler Reference
	continue
	return
	Handler Syntax (Labeled Parameters)
	Calling a Handler with Labeled Parameters
	Handler Syntax (Positional Parameters)
	Calling a Handler with Positional Parameters
	Handler Syntax (Interleaved Parameters)
	Calling a Handler with Interleaved Parameters

	Folder Actions Reference
	adding folder items to
	closing folder window for
	moving folder window for
	opening folder
	removing folder items from

	Appendix A: AppleScript Keywords
	Appendix B: Error Numbers and Error Messages
	AppleScript Errors
	Operating System Errors

	Appendix C: Working with Errors
	Catching Errors in a Handler
	Simplified Error Checking

	Appendix D: Double Angle Brackets
	When a Dictionary Is Not Available
	When AppleScript Displays Data in Raw Format
	Entering Script Information in Raw Format
	Sending Raw Apple Events From a Script

	Appendix E: Libraries using Load Script
	Saving and Loading Libraries of Handlers

	Appendix F: Unsupported Terms
	List of Unsupported Terms

	Revision History
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

