
Cocoa Scripting Guide
Cocoa > Scripting & Automation

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled
computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, eMac, Logic, Mac, Mac OS,
Objective-C, OpenDoc, Pages, QuickDraw,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder and Spotlight are trademarks of
Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Cocoa Scripting Guide 11

Who Should Read This Document 11
Organization of This Document 12
See Also 12

Chapter 1 Overview of Cocoa Support for Scriptable Applications 13

AppleScript and Scriptable Applications 13
The AppleScript Object Model 14
Scriptability Information 16

Scriptability Information Formats 17
Viewing Scripting Terminology 19
Built-in Support for Standard and Text Suites 20
Built-in Support for Basic AppleScript Types 20
Loading Scriptability Information 21

Reliance on Key-Value Coding 22
Interaction With Cocoa Bindings and Core Data 23
Scriptability and Undo 23
Snapshot of Cocoa Scripting 24
A Real World Scripting Example 25
Current Limitations of Cocoa Scripting Support 26

Chapter 2 Designing for Scriptability 29

Designing a New Scriptable Application 29
Adding Scriptability to an Existing Application 31

Chapter 3 Implementing a Scriptable Application 33

Implementation Guidelines 33
Supply a Scripting Definition File 35
Concentrate Scriptable Behavior in Model Objects 35
Provide Keys for Key-Value Coding 36
Add the Scripting Definition File to Your Xcode Project 36
Turn On Scripting Support in Your Application 37
Implement Object Specifier Methods for Scriptable Classes 37
Use the Document Architecture 38

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Access the Text Suite 39

Chapter 4 Preparing a Scripting Definition File 41

Structure of a Scripting Definition File 41
Code Constants Used in Scriptability Information 42
Features Common to Many Scripting Definition File Elements 43
High-level XML Elements 43

Create a Scripting Definition File 45
Add Information to the Scripting Definition File 46

Class Elements 46
Command Elements 50
Enumeration Elements 52
Record-Type Elements 52
Value-Type Elements 53
Cocoa Elements 54

Chapter 5 Getting and Setting Properties and Elements 55

Overview of Getting and Setting Values 55
Key-Value Coding and Cocoa Scripting 56

Maintain KVC Compliance 56
On Omitting KVC Accessors 57
Performance Considerations With KVC 58
Interaction With Key-Value Observing 58
KVC Conversion of Scalar and Structure Values 58
Scripting Additions to KVC 59

Sample KVC-Compliant Accessor Methods 59
Single-Value Access 59
Collection Value Access 60

Special Accessor Methods 61
Support for the Properties Property 61
Coercion 62

Chapter 6 Object Specifiers 63

Overview of Object Specifiers 63
Object Specifiers and KVC 63
When to Implement an Object Specifier Method 64
About Object Specifier Classes 64
A Closer Look at an Object Specifier 65
Evaluation of Nested Specifiers 67

Cocoa Object Specifier Classes 67
Implementing the Object Specifier Method 69

An Object Specifier Method for a Rectangle in Sketch 69
Specifying the Application Object as a Container 70

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Implementing A Method for Evaluating Object Specifiers 70
Implicitly Specified Subcontainers 71

Chapter 7 Script Commands 73

Script Commands Overview 73
Script Command Classes Supplied by Cocoa 74
Script Command Scriptability Information 74
Script Command Components 75
Script Command Creation 75
Script Command Execution 76
Script Commands and Object Specifiers 76
Error Handling 77
Object-first Versus Verb-first Script Commands 78
Steps for Implementing a New or Modified Script Command 81

Implementing an Object-First Command—Rotate 81
Implementing a Verb-First Command—Align 84
Modifying a Standard Command 86

A Verb-first Move Command 86
An Object-first Move Command 87

Summary of AppleScript Command Support 87

Chapter 8 Testing, Debugging, and Performance 91

Scriptability Test Plan 91
Use AppleScript Scripts to Test Your Application 91
Turn On Debugging Output for Scripting 92

Steps for Turning On Cocoa Debugging Output 93
Sample Output 94

Debugging Scriptability Information 95
Checking an sdef File with xmllint 95
Examining Scriptability Information in Your Application 95

Additional Debugging Tips 97
Performance Issues for Scriptability 97

Chapter 9 Cocoa Scripting Classes and Categories 99

Script Commands and Scriptability Information 99
Object Specifiers, Logical Tests, and Related Categories 100
Key-Value Coding and Value Coercion 102
Subclasses for Standard AppleScript Commands 103
Manipulation of Apple Events 103

Chapter 10 How Cocoa Applications Handle Apple Events 105

Apple Event Handling Overview 105

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Basics of Apple Event Handling 105
Handling Apple Events in a Cocoa Application 106

Apple Events Sent by the Mac OS 106
Open Application 107
Reopen 107
Open 108
Print 109
Open Contents 110
Quit 110
Constants for Apple Event Handlers Installed by the Application Kit 111

Installing an Apple Event Handler 111
Installing a Get URL Handler 112
Implementing the Get URL Handler 113

Suspending and Resuming Apple Events and Script Commands 113

Appendix A Evolution of Cocoa Scriptability Information 115

Scriptability Terms 115
Changes in Scriptability Information Versions 115

Advantages of the Scripting Definition Format 116
Advantages of the Script Suite Format 116

Converting and Updating Scriptability Information 117
Creating Suite Files or 'aete' Files from a Scripting Definition 117
Creating Scripting Definitions from Suite Files or 'aete' Files 118
Updating Older Scripting Definition Files for Mac OS X Version 10.4 118

Editing Scriptability Information 118

Appendix B Script Suite and Script Terminology Files 121

Script Suite Files 121
The Structure of a Script Suite File 123

Script Terminology Files 127
The Structure of a Script Terminology File 128

Cocoa Scripting’s Built-in Script Suites 132
Creating Your Own Script Suite Files 132

Document Revision History 135

Glossary 137

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 1 Overview of Cocoa Support for Scriptable Applications 13

Figure 1-1 Object-model containment hierarchy for Sketch application 15
Figure 1-2 Sketch window with graphics 16
Figure 1-3 Structure of an sdef file 18
Figure 1-4 An sdef displayed in a dictionary viewer 19
Figure 1-5 An application's loaded scriptability information 22
Figure 1-6 A Cocoa application responding to an Apple event 25
Table 1-1 Support for basic AppleScript types 20
Listing 1-1 Graphic and rectangle elements from Sketch's sdef file 18

Chapter 3 Implementing a Scriptable Application 33

Table 3-1 Standard suite attributes and relationships 38
Table 3-2 Text Suite Attributes and Relationships 39

Chapter 4 Preparing a Scripting Definition File 41

Figure 4-1 Structure of an sdef file, revisited 42
Table 4-1 Default naming for attributes of cocoa elements 54
Listing 4-1 Version and document type in an sdef file 43
Listing 4-2 A dictionary element from an sdef file 44
Listing 4-3 A suite element for the Sketch suite 44
Listing 4-4 A class element for the rich text class 47
Listing 4-5 Definition of the save options enumeration 52
Listing 4-6 Definition of the print settings record-type 52
Listing 4-7 Definition of the color value-type 53

Chapter 5 Getting and Setting Properties and Elements 55

Listing 5-1 Boolean property getter 59
Listing 5-2 Boolean property setter 60
Listing 5-3 Simple array element accessors 60
Listing 5-4 Array element insert/delete accessors (by index) 60
Listing 5-5 Array element replacement accessor (by index) 61

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 6 Object Specifiers 63

Figure 6-1 Sketch object model and containment hierarchy revisited 65
Figure 6-2 Nested object specifiers for a Sketch rectangle 66
Table 6-1 AppleScript reference forms and corresponding object specifier classes 67
Listing 6-1 An object specifier method for a rectangle 69
Listing 6-2 Specifying the application as a container 70
Listing 6-3 indicesOfObjectsByEvaluatingObjectSpecifier: method from Sketch 71
Listing 6-4 Class definition for text document, containing a contents element 72

Chapter 7 Script Commands 73

Figure 7-1 Executing a script command—verb-first versus object-first 78
Table 7-1 Default support for AppleScript commands and how to customize it 88
Listing 7-1 A script to test the rotate command 83
Listing 7-2 A script to test the align command 85

Chapter 8 Testing, Debugging, and Performance 91

Listing 8-1 Simple test script 92
Listing 8-2 Debug scripting output for sdef-based Sketch 94
Listing 8-3 Debug scripting output for script suite-based Sketch 94
Listing 8-4 Partial output of NSScriptSuiteRegistry information 96
Listing 8-5 Turning on log statements 96
Listing 8-6 NSLog output for SKTAlignCommand 97

Chapter 9 Cocoa Scripting Classes and Categories 99

Table 9-1 Scripting information and command classes 100
Table 9-2 Object specifiers and related classes 101
Table 9-3 Scripting utilities 102
Table 9-4 Subclasses for standard script commands 103
Table 9-5 Classes for manipulating Apple events 104

Chapter 10 How Cocoa Applications Handle Apple Events 105

Table 10-1 Event class IDs for Apple events sent by the Mac OS 111
Listing 10-1 Extracting the search text parameter from the current Apple event 109
Listing 10-2 Signature of an event handler function 112
Listing 10-3 Installing an Apple event handler in a Cocoa application 112
Listing 10-4 Implementation of a get URL Apple event handler 113

Appendix B Script Suite and Script Terminology Files 121

Figure B-1 Script suite for the Standard suite in Property List Editor 133

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Table B-1 Suite dictionary 124
Table B-2 Class list dictionary 124
Table B-3 Class dictionary 125
Table B-4 Property list dictionary 125
Table B-5 Property dictionary 125
Table B-6 Supported commands dictionary 126
Table B-7 Command list dictionary 126
Table B-8 Command dictionary 126
Table B-9 Argument list dictionary 126
Table B-10 Synonym list dictionary 127
Table B-11 Enumeration list dictionary 127
Table B-12 Enumeration dictionary 127
Table B-13 Enumerators dictionary 127
Table B-14 Terminology dictionary 129
Table B-15 Class list terminology dictionary 129
Table B-16 Class terminology dictionary 129
Table B-17 Attribute list terminology dictionary 129
Table B-18 Attribute terminology dictionary 130
Table B-19 Command list terminology dictionary 130
Table B-20 Command terminology dictionary 130
Table B-21 Argument list terminology dictionary 130
Table B-22 Argument terminology dictionary 130
Table B-23 Class synonym list terminology dictionary 131
Table B-24 Class synonym terminology dictionary 131
Table B-25 Enumeration list terminology dictionary 131
Table B-26 Enumerators list terminology dictionary 131
Table B-27 Enumerator terminology dictionary 131
Listing B-1 NSApplication class from the script suite file for the Standard suite 122
Listing B-2 NSApplication class from the script terminology file for the Standard suite

128

9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

10
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

This document describes how to create scriptable applications using the support provided by the
Cocoa application framework. That support, which is referred to as Cocoa scripting, includes classes,
categories, and scriptability information.

A scriptable application is one that can be controlled by AppleScript scripts. Users write scripts to
automate tasks and combine the use of multiple applications. As a developer, you can also use scripts
to speed up prototyping or testing of your scriptable applications.

When a script that targets an application is executed, commands are sent to the application in the
form of Apple events, a kind of interprocess message. Cocoa scripting helps you create scriptable
applications by doing much of the work of receiving these Apple events, extracting information from
them, and invoking methods in your scriptable classes.

This document provides conceptual information and examples that are based primarily on the scripting
support available in Mac OS X versions 10.4 and 10.3.

Important: You can read about changes in Cocoa scripting support for Mac OS X v10.5 in the Scripting
section of Foundation Release Notes.

Although some information may be accurate for versions of the Mac OS prior to v10.3, this document
has not been reviewed for accuracy on those versions, nor does it attempt to provide details for
working with those versions.

Who Should Read This Document

This document is intended for developers who want to make their Cocoa applications scriptable or
who need to know more about how Cocoa applications interact with AppleScript and Apple events.
It assumes you have some familiarity with Cocoa, Objective-C, and AppleScript. However, if you are
unfamiliar with AppleScript, you should start by reading Getting Started with AppleScript and AppleScript
Overview. Many of the terms scripters use are defined in AppleScript Language Guide for AppleScript
1.3.7.

Who Should Read This Document 11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Cocoa Scripting Guide

Organization of This Document

The following chapters describe how to design, implement, and debug a scriptable Cocoa application:

 ■ “Overview of Cocoa Support for Scriptable Applications” (page 13) provides a brief overview
of AppleScript and scriptable applications, and describes the scripting support provided by the
Cocoa application framework. This chapter is a prerequisite for the chapters that follow.

 ■ “Designing for Scriptability” (page 29) provides high-level checklists for designing a new scriptable
Cocoa application and making an existing application scriptable.

 ■ “Implementing a Scriptable Application” (page 33) lists the key steps for implementing a scriptable
Cocoa application, with links to more detailed information where necessary.

 ■ “Preparing a Scripting Definition File” (page 41) describes the structure of scripting definition,
or sdef, files. It also shows how to create an sdef for a scriptable Cocoa application and how to
add scriptability information to it.

 ■ “Getting and Setting Properties and Elements” (page 55) describes how to work with Cocoa
scripting to get and set the values of properties and elements in your scriptable application. It
also provides examples of basic, KVC-compliant accessor methods.

 ■ “Object Specifiers” (page 63) explains the mechanism for locating a scriptable object in the context
of its container and provides sample object specifier methods.

 ■ “Script Commands” (page 73) provides additional detail about the script command mechanism
Cocoa uses to respond to Apple events and describes how to implement script commands.

 ■ “Testing, Debugging, and Performance” (page 91) provides tips for building up your test plan
debugging the scriptability in your Cocoa application, and spotting possible performance issues.

The following chapters provide additional information about Cocoa scripting support:

 ■ “How Cocoa Applications Handle Apple Events” (page 105) describes the default support for
handling Apple events in Cocoa applications and how your application interacts with it.

 ■ “Cocoa Scripting Classes and Categories” (page 99) provides brief descriptions of the main classes
that make up Cocoa scripting support, including those that you use in creating scriptable
applications.

 ■ “Evolution of Cocoa Scriptability Information” (page 115) describes changes to Cocoa scriptability
information over time. It includes information about when to use various types of scriptability
information and how to convert between them.

The following chapter describes how to specify scriptability information using an earlier format:

 ■ “Script Suite and Script Terminology Files” (page 121) describes another way to provide
terminology information and describes the structure of script suite and script terminology files.

See Also

For more information on the basic design patterns used by Cocoa scripting support, see Key-Value
Coding Programming Guide and Cocoa Design Patterns in Cocoa Fundamentals Guide.

12 Organization of This Document
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Cocoa Scripting Guide

This chapter provides an overview of Cocoa scripting and how your application takes advantage of
it, and provides links to more detailed information in other chapters and documents.

A scriptable application is one that scripters can control with AppleScript scripts. To create a scriptable
application, you specify a dictionary of terms that scripters can use with your application, implement
classes and methods to support scriptable features, and provide a road map of scriptability information
that AppleScript and Cocoa use to allow scripts to control the application.

Cocoa scripting refers to the support provided by the Cocoa application framework for creating
scriptable applications. It includes classes, categories, and scriptability information that specifies the
supported AppleScript terminology and the class information needed to work with it.

Cocoa scripting makes use of standard mechanisms and design patterns used throughout Cocoa,
including key-value coding (KVC) and Model-View-Controller (MVC). When an AppleScript command
targets your application, the goal of the scripting support is to send the command directly to the
application's model objects to perform the work. To do that, it relies on the KVC mechanism to get
and set values in your application's scriptable model objects, based on a set of keys you define for
them.

Through the use of these mechanisms, you can make your application scriptable with a minimum of
additional code.

AppleScript and Scriptable Applications

AppleScript is a scripting language that makes possible direct control of scriptable applications and
scriptable parts of the Mac OS (such as the Finder). The AppleScript language doesn’t supply an
exhaustive or a task-specific terminology. Instead, it defines common commands, such as get, set,
make, and delete, which can be applied to a wide variety of objects or their properties in a scriptable
application. Scriptable applications define additional terms as needed for their unique operations.

A scriptable application is one that makes its operations and data available in response to AppleScript
messages, called Apple events. An Apple event is a kind of interprocess message that can specify
complex operations and data. Apple events make it possible to encapsulate a high-level task in a
single package that can be passed across process boundaries, performed, and responded to with a
reply event.

AppleScript and Scriptable Applications 13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable
Applications

Note: Mac OS X mechanisms for communicating between processes are described in System-Level
Technologies in Mac OS X Technology Overview.

A scriptable application specifies the set of scripting terms it understands and provides information
that AppleScript uses to compile scripts that use those terms. When a user executes a script that targets
the application, Apple events are sent to the application. Apple events can also be sent by other
applications and by the Mac OS.

Applications handle Apple events by registering with the Apple Event Manager for the events they
expect to receive and by supplying handler routines to process the events. Cocoa scripting simplifies
this process by automatically registering and responding to Apple events your application can handle,
based on the scriptability information you supply. That means you don't need to write low-level code
to interact with Apple events and the Apple Event Manager.

AppleScript and Apple events are built on the Open Scripting Architecture (OSA), which is described
in Open Scripting Architecture in AppleScript Overview.

The AppleScript Object Model

Every scriptable application defines an AppleScript object model to specify the classes of objects a
scripter can work with in scripts, the accessible properties of those objects, and the inheritance and
containment relationships for those classes. Inheritance allows a class to access the properties of its
ancestors. Containment specifies where an object resides within the hierarchy of objects in the running
application.

The objects in the object model often correspond closely to object classes in the application that
implement scripting support, but there is no requirement that they do so. For example, a text application
might provide script access to words in a document, but it would not be efficient for the application
to maintain a corresponding object for each word.

Application classes have attributes, to-one relationships, and to-many relationships. AppleScript classes
in the object model have properties and elements—properties are synonymous with attributes and
to-one relationships, while elements are synonymous with to-many relationships. For more information
on these and related terms, see the “Glossary” (page 137).

Figure 1-1 shows the object-model containment hierarchy for a specific document (shown in Figure
1-2 (page 16)) in the Sketch application. On the left are the objects a scripter uses to work with the
application. On the right are the objects that Sketch uses to represent its object model.

14 The AppleScript Object Model
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

Note: Sketch is a sample application available from Apple.

Figure 1-1 Object-model containment hierarchy for Sketch application

application
 documents

document "SketchDocOne"
 graphics

rectangle 1

rectangle 2

circle 1

circle 2

SKTRectangle

SKTRectangle

SKTCircle

SKTCircle

NSApplication
 orderedDocuments (array)

SKTDrawDocument
 graphics (array)

In this object model, documents are elements of the application object and graphics are elements of
document objects, while the name of a document is a property of the document. For a script to access
an object in the hierarchy, it must locate the object within its containment hierarchy. (In the application,
the orderedDocuments array is a to-many relationship of the NSApplication object.)

Consider, for example, the following sample script:

tell app "Sketch" to set the x position of rectangle 1 of document "SketchDocOne"
to 25

This script specifies a rectangle, in a document, in the application. If applied to the following Sketch
document, it would set the horizontal (x) position for whichever of the two rectangle shapes is first
in the document's ordered list of graphics.

The AppleScript Object Model 15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

Figure 1-2 Sketch window with graphics

A script can ask for rectangle 1 of document "SketchDocOne" without having to specify either
graphics or documents (though they are part of the hierarchy shown above) because an AppleScript
class definition implicitly specifies the relationships of its contained elements.

Sketch's object model uses inheritance for its graphics objects. All such objects (rectangle, circle,
image, line, and text area) inherit from a common ancestor (graphic). Thus the term graphic 1
of document "SketchDocOne" might specify the same object as rectangle 1 of document
"SketchDocOne", depending on the ordering of the objects in the graphics array.

Note: Cocoa applications typically follow the Model-View-Controller (MVC) design pattern, where
model objects encapsulate and manipulate the data used by the application. It is generally
recommended that you support scriptability through your model objects, which tend to be more
persistent. For more information, see “Concentrate Scriptable Behavior in Model Objects” (page 35).

Don't confuse the AppleScript object model with MVC model objects: the former is a structure you define;
the latter are objects in your application that may or may not be part of your AppleScript object model.

Scriptability Information

A scriptable application supplies scriptability information that formally lays out the AppleScript
object model for the application and maps it to application objects. This scriptability information does
two things:

 ■ It specifies the terminology available for use in scripts that target the application and supplies
comments on the purpose and usage for that terminology.

16 Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

 ■ It provides information, used by AppleScript and by Cocoa, about how support for that
terminology is implemented in the application.

This information includes the KVC keys that Cocoa scripting uses to gain access to attribute and
relationship information in the application's classes. Without these keys, scripts would not be
able to manipulate properties of scriptable objects in the application's object model.

To uniquely identify terms in its scriptability information, an application uses constants called
four-character codes (or Apple event codes). A four-character code is just four bytes of data that can
be expressed as a string of four characters in the Mac OS Roman encoding. These codes are described
in “Code Constants Used in Scriptability Information” (page 42).

Within an application's scriptability information, terminology associated with related functionality
(for example, operations involving text, graphics, or databases) are generally collected into suites.
Cocoa provides the predefined suites described in “Built-in Support for Standard and Text Suites” (page
20).

AppleScript uses the application’s scriptability information, including four-character codes, to compile
scripts and send Apple events to the application. Cocoa uses the information to interpret received
Apple events and create script command objects to perform the specified operations.

Scriptability Information Formats

You define your application’s scriptability information using one of two formats. The first is the
scripting definition or sdef format. This is an XML-based format that describes a set of scriptability
terms and the commands, classes, constants, and other information that describe the application's
scriptability. The sdef format was introduced in Mac OS X version 10.2 and is used natively by Cocoa
starting in Mac OS X version 10.4. In the sdef format, an application's scriptability information is
contained in a single scripting definition (or sdef) file, with the extension .sdef. The word sdef can
be used to describe either the format or a file in that format.

Important: You can read about additional refinements to sdef usage in Cocoa applications for Mac
OS X v10.5 in the Scripting section of Foundation Release Notes.

A second, older format uses property list files and is referred to as the script suite format. It supplies
Cocoa and AppleScript with roughly the same information, in the form of a script suite file and a
corresponding script terminology file:

 ■ A script suite file describes scriptable objects in terms of their attributes, relationships, and
supported commands, and has the extension .scriptSuite.

 ■ A script terminology file provides AppleScript terminology—the English-like words and phrases
a scripter can use in a script—for the class and command descriptions in the corresponding script
suite file. Script terminology files have the extension .scriptTerminology.

Defining scriptability information with either of these formats is a bit like defining your application
interface with nib files, though you work with text rather than a graphic editor. In both cases you
provide information up front that Cocoa uses at specific times to create objects and provide support
for the task at hand. The information from an sdef (or the older property list form) is loaded just once
per application launch, as described in “Loading Scriptability Information” (page 21). The loaded
information is then used as needed to create script command objects to perform scriptable operations.

Scriptability Information 17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

A scripting definition file follows the XML format defined in the sdef man page and described in
more detail in “Preparing a Scripting Definition File” (page 41). Figure 1-3 shows the main XML
elements in an sdef file.

Figure 1-3 Structure of an sdef file

dictionary

class

command

suite

property

element

record-type

value-type

enumeration

As an example of specific sdef elements, Listing 1-1 shows the graphic and rectangle definitions
from Sketch's sdef file. The graphic class defines several properties (such as x position and y
position) that are inherited by other shape classes. The rectangle class adds an orientation
property and specifies that the object responds to the rotate command, which is specific to rectangles.

Listing 1-1 Graphic and rectangle elements from Sketch's sdef file

... (from the Sketch suite)
<class name="graphic" code="grph"

description="A graphic. This abstract class represents the
individual shapes in a Sketch document.
There are subclasses for each specific type of graphic.">

<cocoa class="SKTGraphic"/>
<property name="x position" code="xpos" type="real"

description="The x coordinate of the graphic's bounding rectangle."/>
<property name="y position" code="ypos" type="real"

description="The y coordinate of the graphic's bounding rectangle."/>
<property name="width" code="widt" type="real"

description="The width of the graphic's bounding rectangle."/>
... (some properties omitted)
</class>
<class name="rectangle" code="d2rc" inherits="graphic"

description="A rectangle graphic.">
<cocoa class="SKTRectangle"/>
<property name="orientation" code="orin" type="orientation"/>

18 Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

<responds-to name="rotate">
<cocoa method="rotate:"/>

</responds-to>
</class>

Viewing Scripting Terminology

Users typically examine scripting terminology in a dictionary viewer to discover which features are
scriptable and how to script an application. You can view the scripting terminology for a scriptable
application with Script Editor or Xcode. Figure 1-4 shows the sdef file from the Sketch application in
a dictionary viewer, with the graphic and rectangle classes visible.

Figure 1-4 An sdef displayed in a dictionary viewer

Double-clicking an sdef file in the Finder opens it in a dictionary viewer like the one shown above.
Double-clicking an sdef file in an Xcode project similarly opens it in a dictionary viewer window. To
view or edit the XML for the file, open the sdef file with any plain text editor; in Xcode, select the sdef
file and choose File > Open As > Plain Text File.

Scriptability Information 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

For related information, see “Editing Scriptability Information” (page 118).

Built-in Support for Standard and Text Suites

A scriptable application typically supports certain standard AppleScript terms, such as the count
and make commands and the application class. Cocoa provides built-in support for these terms in
the Standard suite. It also provides command classes, including NSCountCommand and
NSCreateCommand, to implement standard commands. In addition, classes such as NSApplication
and NSDocument implement certain aspects of standard scripting support.

Cocoa scripting also provides support for the get and set commands, including implementation of
the command classes NSGetCommand and NSSetCommand. These commands are not part of the Standard
suite, but are considered built-in AppleScript commands. Allowing scripters to get and set the values
of properties and elements of scriptable objects is a key part of making an application scriptable.

Note: Though "Standard suite" is the current name, you may see it referred to as the "Core suite" (and
you may see filenames that include “Core”). That usage dates back to the early days of AppleScript.

The Standard suite defines the following AppleScript commands: (for all classes) copy, count, create,
delete, exists, and move; (for documents and windows) print, save, close. Note that there is no
default implementation for the print command—see “Print” (page 109) for information on how to
support printing.

To support text-related classes such as rich text, word, and paragraph, Cocoa implements the Text
suite.

Cocoa’s built-in support for the Standard and Text suites is described in more detail in “Use the
Document Architecture” (page 38) and “Access the Text Suite” (page 39). To include it in your
application, you follow the steps described in “Turn On Scripting Support in Your Application” (page
37).

Built-in Support for Basic AppleScript Types

Cocoa scripting provides built-in support for basic AppleScript types and automatically associates
them with appropriate Cocoa data types, as shown in Table 1-1. You can use these types without
declaring them in your sdef file.

Table 1-1 Support for basic AppleScript types

CodeCocoa typeAppleScript type

"****"NSAppleEventDescriptorany

"bool"NSNumberboolean

"ldt "NSDatedate

"file"NSURLfile

"long"NSNumberinteger

20 Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

CodeCocoa typeAppleScript type

"insl"NSPositionalSpecifierlocation specifier

"nmbr"NSNumbernumber

"QDpt"NSData containing a QuickDraw Pointpoint

"doub"NSNumberreal

"reco"NSDictionary

This type is used as the type of the properties property for the
item class, and the type of the with properties parameters of
the duplicate and make commands. Declaring something to be of
type record doesn't provide enough information to convert Apple
event record descriptors to NSDictionary objects, so various Cocoa
scripting command classes have special code to handle that
situation. In your code, instead of using the record type, you should
declare specific record types (see “Record-Type Elements” (page
52)) and use those for class properties and command parameters.

record

"qdrt"NSData containing a QuickDraw Rectrectangle

"obj "NSScriptObjectSpecifierspecifier

"ctxt"NSString

Internally, Cocoa scripting always uses Unicode text when
converting to get information from or add it to an Apple event.

text

"type"NSNumbertype

Loading Scriptability Information

When an application first needs to work with scriptability information, Cocoa scripting uses a global
instance of NSScriptSuiteRegistry to load information from the application's sdef file:

 ■ For each class described in the sdef file, it instantiates a class description object
(NSScriptClassDescription) that stores information about objects of that type.

This information includes the KVC keys that Cocoa scripting uses to access values of the
application's scriptable objects.

 ■ For each script command described in the sdef file, it registers a handler routine for Apple events
that specify that command.

It also instantiates a command description object (NSScriptCommandDescription) that stores
information such as the name of the scripting command class to instantiate to perform the
command, as well as the command's arguments, and return type (if any).

Figure 1-5 shows the loaded class and command descriptions for an application. Cocoa uses the
information to create instances of command classes and descriptions of application objects that it
needs to handle Apple events received by the application.

Scriptability Information 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

Figure 1-5 An application's loaded scriptability information

NSScriptSuiteRegistry

NSScriptClassDescription

name
attribute keys
relationship keys
supported commands

NSScriptCommandDescription

name
class (to perform command)
argument names and types
return type

Important: You don't typically instantiate scripting commands in your application—you list the
commands your application supports in your sdef file and Cocoa instantiates them when your
application receives the corresponding Apple events.

See “How Cocoa Applications Handle Apple Events” (page 105) for information on how Cocoa handles
Apple events other than those that are part of your application's scriptability information.

Application scriptability information automatically includes information to support the basic
AppleScript types listed in Table 1-1 (page 20) and to make the get and set commands available to
all applications.

Reliance on Key-Value Coding

Key-value coding (KVC) is a mechanism for accessing object properties indirectly by key. A key is
just a string that identifies a property, such as "xPosition" for the horizontal coordinate of a graphic
object (shown in Listing 1-1 (page 18)). The KVC API provides a generic way to query an object for
the values of its keys and to set new values for those keys.

Cocoa scripting relies on KVC for the following purposes:

 ■ Command objects use KVC to find the specified scriptable objects on which to operate.

 ■ For many commands, Cocoa uses KVC to access properties of the specified objects to get or set
their values.

As you design the object classes for your application, you also define keys for their scriptable properties.
Your application provides these keys in class definitions in its sdef file. Then, when you implement
accessor methods (or declare instance variables) that correspond to these keys, you make it possible
for Cocoa scripting and KVC to get and set the corresponding values.

22 Reliance on Key-Value Coding
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

Default naming for keys is described in “Provide Keys for Key-Value Coding” (page 36). For
information on naming accessor methods, see “Maintain KVC Compliance” (page 56).

Interaction With Cocoa Bindings and Core Data

Cocoa scripting, Cocoa bindings, and Core Data are three development technologies available in Mac
OS X that rely on key-value coding:

 ■ Cocoa scripting, described throughout this document, provides support for creating scriptable
applications.

 ■ The Core Data framework provides generalized and automated solutions to common tasks
associated with object life-cycle and object graph management, including persistence. It is described
in detail in Core Data Programming Guide.

 ■ Cocoa bindings provides a means of keeping model and view values synchronized, without
having to write a lot of "glue code," such that a change in one is reflected in the other. It is described
in detail in Cocoa Bindings Programming Topics.

As noted, all three of these technologies rely on KVC, so you will gain by making your application
KVC-compliant. Cocoa bindings and Core Data also make use of key-value observing, but Cocoa
scripting does not.

While these technologies are not closely tied together, here are some rules of thumb that may aid in
combining their use:

 ■ Core Data and Cocoa bindings: These technologies neither aid nor interfere with each other, so
you can mix them as needed for your application.

 ■ Core Data and Cocoa scripting: Because Cocoa scripting deals in ordered to-many relationships,
and Core Data deals in unordered to-many relationships, you must do extra work to expose the
to-many relationships of your managed objects as scriptable element classes. For each
managed-object to-many relationship that you want to make scriptable, you can add an
unmanaged, derived, to-many relationship solely for access by Cocoa scripting. For information
about how to implement these derived to-many relationships, see "Indexed Accessor Patterns for
To-Many Properties" in Key-Value Coding Accessor Methods in Key-Value Coding Programming
Guide and “Getting and Setting Properties and Elements” (page 55) in this document.

 ■ Cocoa scripting and Cocoa bindings: Again, these technologies neither aid nor interfere with each
other. If you're using bindings but not Core Data, you probably have ordered relationships, which
will work with Cocoa scripting.

For related information, see “Interaction With Key-Value Observing” (page 58).

Scriptability and Undo

Scriptable applications should generally support undo of scripted operations as they would any
user-initiated operation. That is, after a script causes the application to perform one or more operations,
a user should be able to sequentially undo the operations in the normal manner.

Interaction With Cocoa Bindings and Core Data 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

Cocoa scripting provides no special support for undo, but neither does it interfere with normal undo
operations. Applications that take advantage of the Model-View-Controller paradigm and Cocoa's
key-value coding mechanism, as scriptable applications are designed to do, are well-positioned to
support both scriptability and undo.

For more information on supporting undo, see Undo Architecture.

Snapshot of Cocoa Scripting

The work done by your scriptable application is divided between the application and Cocoa scripting.
Your application implements classes and methods that perform its scriptable operations; it also
provides information that describes its scriptability. Cocoa receives Apple events and uses your
scriptability information to interpret them and perform the specified operations, calling on your code
to do the actual work.

Here is a summary of how this process works:

1. The application defines scriptability information (in an sdef file, or in the older style script suite
and script terminology files) that includes both the terms a scripter can use and the application
information for supporting those terms. This information typically includes the Standard suite
(implemented by Cocoa scripting), which supports standard AppleScript commands and classes.

The application defines classes for the scriptable objects it supports and provides keys for their
scriptable properties and elements. It also defines additional script command classes if it has
scriptable operations that can't be performed by one of the standard command classes provided
by Cocoa.

Scriptability is generally provided through the application's model objects (in terms of the
Model-View-Controller paradigm).

2. The application is key-value coding (KVC) compliant in naming the instance variables or accessor
methods for the scriptable properties and elements of its scriptable classes.

3. For each scriptable class, the application implements an object specifier method, which locates a
scriptable object of that type within the application’s containment hierarchy.

4. The application’s Info.plist file has entries that activate Cocoa scripting and specify an sdef
file, as shown in “Turn On Scripting Support in Your Application” (page 37).

5. When it is first needed, Cocoa loads the application's scriptability information and automatically
registers event handlers for the supported commands.

6. When the application receives an Apple event for a registered command, Cocoa instantiates a
script command object containing all the information needed to identify the application objects
on which the command should operate. All command objects use KVC to locate the specified
scriptable objects to operate on.

Cocoa then executes the command, which sends messages to the appropriate application objects
to perform the work. For many commands, Cocoa uses KVC to get or set values of the specified
objects.

24 Snapshot of Cocoa Scripting
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

7. When a command needs to return a value, Cocoa scripting packages the information in a reply
Apple event and returns it.

If an error occurs while executing the command, Cocoa returns the error information (including
any information added by the application) in the reply Apple event. For details, see “Error
Handling” (page 77).

8. If a command requires asynchronous processing (such as the gathering of information through
a sheet), the application can suspend it, so that the application doesn't receive additional Apple
events during processing. For details, see “Suspending and Resuming Apple Events and Script
Commands” (page 113).

A Real World Scripting Example

To track a scripting command from the execution of an AppleScript script to the operation it performs
in the targeted application, consider again the following one-line script, which attempts to set a value
in a document of the Sketch application:

tell app "Sketch" to set the x position of rectangle 1 of document "SketchDocOne"
to 25

When this script is compiled against Sketch's scriptability information and executed, it results in an
Apple event being sent to the Sketch application. The Apple event encapsulates the set command
and specifies an operation on an object in the "SketchDocOne" document shown in Figure 1-2 (page
16). Figure 1-6 illustrates the actions that result when the application receives the set Apple event.

Figure 1-6 A Cocoa application responding to an Apple event

1
2

3

4

1
set Apple event

Sketch application

NSSetCommand

SKTDrawDocument
"SketchDocOne"

Script command object

Cocoa scriptingʼs
Apple event

translator

Application
scriptabiltiy
information

Objects to modify:
 rectangle 1 of document
 "SketchDocOne"

Values to set:
 25

set x position
of rectangle 1
of document

"SketchDocOne"
to 25

rectangle 2
circle 2

rectangle 1
circle 1

rectangle 2
circle 2

Here is a description of the steps shown in this figure:

1. The application receives the Apple event specifying a set command.

A Real World Scripting Example 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

2. The Apple event translator, a part of Cocoa scripting, uses scriptability information supplied by
the application to evaluate the Apple event. This information is pictured in more detail in Figure
1-5 (page 22).

3. The translator creates an instance of an NSSetCommand script command and initializes it with the
information need to perform the command:

 ■ The direct parameter of the set command specifies the object or objects to set the value for
(in this case, the first rectangle), and becomes the receivers specifier in the NSSetCommand
object.

 ■ The to parameter provides the value to set (in this case, 25) and becomes the "Value" argument
in the NSSetCommand object.

These values are stored in the command object as an argument dictionary. For information on
how your application works with that information, see “Script Command Components” (page
75).

4. When the set command is executed, it uses KVC to locate the specified object or objects. It also
relies on KVC to set the specified value. For additional detail, see “Getting and Setting Properties
and Elements” (page 55).

Some commands return a value, but the set command does not.

As this example and the information in “Snapshot of Cocoa Scripting” (page 24) show, an application
can support the set command with a relatively modest effort: it modifies its Info.plist file to
indicate it is scriptable and to specify its sdef file; it provides command and class information in the
sdef file; and it maintains KVC compliance for scriptable properties in its scriptable classes.

If the application also implements an objectSpecifier method for each of its scriptable classes, it
can support the get command as well. Cocoa scripting uses KVC to get the specified value from the
application and package it up in a return Apple event.

As a result, an application can rather quickly supply a great deal of scriptability just by supporting
get and set access to properties of a few key objects.

Current Limitations of Cocoa Scripting Support

There are some scripting-related features for which Cocoa scripting currently provides little or no
support.

 ■ Sending individual Apple events. Applications might want to send events to other scriptable
applications or to themselves to obtain data or services or to support recording (see next item).

However, Cocoa applications are free to use C functions from the Apple Event Manager. So, for
example, your application could use an instance of NSAppleEventDescriptor to assemble the
information for an Apple event, invoke the aeDesc method to get an Apple event data structure,
and use that structure with the C functions described in Apple Events Programming Guide to send
the Apple event.

26 Current Limitations of Cocoa Scripting Support
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

 ■ Recording. A recordable application sends itself Apple events, which can be assembled by the
Script Editor application into a script that “records” the user’s actions (when recording is turned
on in Script Editor).

Cocoa scripting does not currently enforce the read/write status specified in an sdef, so marking a
property as read-only does not ensure that it cannot be written. (Read/write access is described in
“Property Elements” (page 48).)

Current Limitations of Cocoa Scripting Support 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

28 Current Limitations of Cocoa Scripting Support
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of Cocoa Support for Scriptable Applications

This chapter provides high-level checklists for designing a new scriptable Cocoa application and
adding scriptability to an existing application.

Whether you’re designing a Cocoa application from scratch or adding a new feature to an existing
application, you go through a standard set of design steps, tailored to your experience, the systems
you work with, and the project at hand. The process is no different when you’re designing for
scriptability.

The following steps provide an outline for your design process, but are not intended to be
comprehensive. However, links are provided to additional design information in this and other
documents.

Designing a New Scriptable Application

To design a new scriptable Cocoa application, consider using the following steps:

1. For your overall application design, work with the Model-View-Controller (MVC) design pattern,
which is widely followed in Cocoa applications. MVC is described in detail in Cocoa Fundamentals
Guide.

Good scripting support generally calls for scripting the model, rather than the view layer. For
more information, see “Concentrate Scriptable Behavior in Model Objects” (page 35).

Cocoa bindings and Core Data also work with the MVC design pattern. See “Interaction With
Cocoa Bindings and Core Data” (page 23) for more information.

2. Think about scripting very early in your design.

When you first start defining the requirements for your application, consider the kinds of features
you’ll want to make scriptable and how users might script those features to automate operations
with your application. This can help provide insight into the overall goals for your application.

You'll want the terms you specify to look natural in AppleScript's English-like grammar. Scripting
terms won't necessarily be an exact match for the terminology you use within your application's
code.

Technical Note TN2106, "Scripting Interface Guidelines," supplies valuable information on how
to provide a clean and consistent scripting interface for your application.

Designing a New Scriptable Application 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Designing for Scriptability

http://developer.apple.com/technotes/tn2002/tn2106.html

3. Work out the design for your AppleScript object model—the objects scripters will use in their
scripts, and the inheritance and containment relationships between them.

This includes identifying the scriptable properties of your scriptable classes and providing a set
of keys to identify them. (You'll use this information later, in your sdef file, to provide the keys
Cocoa scripting uses with key-value coding. However, in many cases, you won't need to specify
keys explicitly—Cocoa can determine them automatically by applying its default rules to the
property names.)

For more information, see “Provide Keys for Key-Value Coding” (page 36).

4. Determine which of the standard AppleScript commands your application will support. Cocoa
provides support for most of the standard scripting commands, including close, count, delete,
duplicate, exists, get, make, move, open, print, quit, save, and set, but your application has
to do some work too.

Scripters expect your application to support whichever of these commands make sense for it, and
to make the commands work in standard ways. By meeting these expectations, you gain two
kinds of leverage:

 ■ You can take advantage of scripters’ existing knowledge, so that your application’s scriptability
is easier for them to understand and use (meaning fewer complaints and support calls).

 ■ Supporting a few commands can provide a lot of scriptability—for example, if you provide
access through the get and set commands to five properties in each of the two most important
classes in your application, that’s 20 scriptable operations—2 commands times 5 properties
times 2 classes. In many cases, support for the get and set commands requires relatively
little coding effort.

5. To support application-specific operations that can’t be handled by one of the Cocoa scripting
command classes, define new script command subclasses for those operations.

Keep in mind that you can often accomplish a goal with an existing command. For example,
rather than define a new rename command, you can use the existing set command to set the
name property of an object to the new name.

For more information, see “Script Commands” (page 73).

6. Create the actual scripting definition file (sdef) for your application.

This is listed as a design step because it is possible to define an sdef and actually compile scripts
against it in a test or skeleton application before you’ve written code to support your scriptability.
You can even let scripters in your target audience work with your application's terminology and
provide feedback.

Note: To test changes you make to an sdef file, you must quit the application, rebuild, and relaunch
it to pick up the changes. In addition, the Script Editor application caches scriptability information,
so you may need to quit and relaunch Script Editor as well.

Doing this step early can help immensely in refining your scripting support and ensuring that it
is user-friendly for scripters. In addition, your AppleScript dictionary can serve as a useful design
document for the entire application.

30 Designing a New Scriptable Application
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Designing for Scriptability

Although you can wait to write your scripting terminology until you implement the application,
writing it first will help to ensure consistency and usability. And during implementation, you
don't need to implement support for your terminology all at once—you can do it incrementally
as you become more familiar with the process.

For information on creating an sdef file, see “Preparing a Scripting Definition File” (page 41).

7. Design the application classes that will support scriptability. Make sure these classes support the
scripting object model you have defined, including both inheritance and containment relationships.

You must name the accessor methods for scriptable properties of these classes to match the keys
you defined earlier, as described in “Maintain KVC Compliance” (page 56).

8. Plan for testing.

Your testing should include creation and regular execution of AppleScript scripts that exercise
the application’s functionality. The ability to automate your testing and to more easily perform
regression testing is one of the big gains of making your application scriptable.

Performance represents another important area of testing for most applications. For a general
introduction, see Getting Started with Performance. For issues specific to scriptable applications,
see “Performance Issues for Scriptability” (page 97).

And of course, you should also plan for unit testing or other kinds of testing that you customarily
use.

For issues to cover in your test plan, see “Scriptability Test Plan” (page 91).

Adding Scriptability to an Existing Application

To add scriptability to an existing Cocoa application, consider using the following steps. (Some steps
are abbreviated, where they repeat those found in “Designing a New Scriptable Application” (page
29).)

1. If time allows, and especially if there are other reasons to redesign the application, consider a
major redesign, following the steps described previously for designing a new scriptable application.

2. Experiment with creating a scripting definition file for your application.

As noted previously, you can compile scripts against your terminology before you’ve written
any code. That helps you identify the scripting objects and terminology you want to provide for
scripters (your AppleScript object model), as well as the underlying application information you
need to expose to support that terminology. It also helps determine the scale of the effort to make
the application scriptable.

3. In classes containing information you want to make scriptable, make use of any instance variables
or accessor methods that are already key-value coding compliant.

If not, you can add KVC-compliant accessors to support scriptability. One convenient way to do
this is through the use of an Objective-C category. This approach is most appropriate in the case
where you are primarily making existing properties and elements scriptable. It can also be useful
when you don't have free access to the existing code.

Adding Scriptability to an Existing Application 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Designing for Scriptability

4. Consider designing scriptable “helper” classes to implement the object hierarchy you expose to
scripters. These classes can maintain references to application objects that contain the actual
information scripters will be working with.

You can define helper classes from scratch, adding properties and relationships as needed to
support your AppleScript object model. To access the underlying data, you have to invoke methods
in existing classes—this is where you’re likely to find the most complexity in retrofitting an
existing application.

This approach is most appropriate in the case where you need to pull together properties from
multiple application classes to represent one AppleScript object model class, or where a category
won't work because you need to add new instance variables.

5. Determine which of the standard AppleScript commands your application will support and plan
new script command subclasses for any additional commands that are needed.

6. Plan for testing, using both AppleScript scripts and other testing options available to you.

32 Adding Scriptability to an Existing Application
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Designing for Scriptability

This chapter lists the key steps for implementing a scriptable Cocoa application, with links to more
detailed information where necessary.

Implementation Guidelines

Once you have completed one of the design phases described in “Designing for Scriptability” (page
29), you use steps like the following to implement a scriptable Cocoa application:

1. For a new application, implementing scriptability should be an integral part of creating the
application. That is, you’ll be creating scriptable classes, adding scripting accessor methods, and
so on, as you implement other parts of the application.

When you’re adding scriptability to an existing application, there is more opportunity for a staged
or incremental approach. That is, you may want to test your approach by retrofitting one or a
small number of classes, before extending it to the entire application.

In either case, your work should include milestones to test each phase of scriptability, as spelled
out in your test plan.

2. Cocoa follows the Model-View-Controller (MVC) design pattern, where model objects encapsulate
and manipulate the data used by the application. You should generally support scriptability in
your model objects, which tend to be more persistent. Although there may be some cases where
you want to allow scripting of your view objects, keep in mind that scripts that operate on the
user interface tend to be fragile, and they can also be less efficient.

For more information, see “Concentrate Scriptable Behavior in Model Objects” (page 35).

3. Provide an sdef file with the scriptability information for your application.

For more information, see “Supply a Scripting Definition File” (page 35).

4. Maintain key-value coding (KVC) naming compliance for instance variables or accessor methods
for scriptable properties and elements, based on the keys in your sdef file. Cocoa scripting support
relies on this naming compliance.

For details, see “Maintain KVC Compliance” (page 56).

Implementation Guidelines 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

5. Include the sdef file in the Xcode project for your application, as described in “Add the Scripting
Definition File to Your Xcode Project” (page 36).

6. Modify your application’s Info.plist file to turn on Cocoa scripting support and identify your
sdef file, as described in “Turn On Scripting Support in Your Application” (page 37).

7. Cocoa implements the NSScriptCommand class and a number of specific subclasses, such as
NSDeleteCommand, NSGetCommand, NSMoveCommand, and NSSetCommand. However, for some
commands implemented by Cocoa, your application may need to provide a different
implementation.

For information on how to do this, see “Steps for Implementing a New or Modified Script
Command” (page 81).

8. Implement objectSpecifiermethods for scriptable classes in your object model. These methods
describe the object and point to its parent in the object containment hierarchy (with the application
object generally serving as the outermost container). They are invoked by an instance of
NSGetCommand when it works with your application to obtain the requested information.

If you’ve created helper classes to add scriptability to an existing application, these classes also
need to implement object specifier methods.

For more information, see “Implement Object Specifier Methods for Scriptable Classes” (page
37).

9. Implement any new script command subclasses your application requires.

Many applications provide unique capabilities, such as rotating an image or converting between
two audio formats. To make these features scriptable, you may need to define new script command
classes that are subclasses of NSScriptCommand or one of the other command classes provided
by Cocoa.

For more information, see “Subclasses for Standard AppleScript Commands” (page 103) and“Script
Commands Overview” (page 73).

10. To take advantage of Cocoa scripting support that works with document and window classes,
your application should use the Cocoa document architecture.

For more information, see “Use the Document Architecture” (page 38).

11. To take advantage of Cocoa scripting support that works with text, your application can take
advantage of Cocoa's built-in support.

For more information, see “Access the Text Suite” (page 39).

12. Throughout the implementation process, test your application according to the test plan you
developed.

For tips and suggestions, see “Testing, Debugging, and Performance” (page 91).

34 Implementation Guidelines
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

Supply a Scripting Definition File

Every scriptable application must provide a definition of its scriptability information—the terminology
available for use in scripts that target the application, as well as the implementation information used
to support that terminology. This information includes a set of keys for the scriptable properties
accessible in the application through key-value coding (described in “Provide Keys for Key-Value
Coding” (page 36)).

If you developed an sdef file during the design phase, you've already completed this step. If not, see
“Preparing a Scripting Definition File” (page 41) for a description of the steps you take to create an
sdef file and add scriptability information to it.

For information on working with the older scriptability format, see “Script Suite and Script Terminology
Files” (page 121).

Concentrate Scriptable Behavior in Model Objects

The Model-View-Controller (MVC) paradigm is one of the central design patterns for Cocoa
applications. MVC assigns objects in an application to one of three roles and recommends that you
try to maintain a separation among objects of different roles.

 ■ Model objects encapsulate the data and basic behaviors of the application; ideally, they have no
explicit connection to the user interface.

 ■ View objects present data to the user; they know how to display and possibly edit data, but
typically do not encapsulate any data that is not specific to displaying or editing.

 ■ Controller objects act as an intermediary, coordinating the exchange of data between the model
and view objects.

Generally, the objects that you make scriptable should be model objects. The most efficient way for
a script to perform a task generally involves modifying the model and is often not the same as the
best way for a user to do the same task through the user interface (or view). This is consistent with
how AppleScript works, and Cocoa accordingly gears its scripting support to the model layer.

A script should not require the user’s involvement, unless it is intended more as a macro than as a
form of batch processing. In a macro-like script, the user must prepare things for the script (such as
opening a window and creating or selecting certain objects), and then invoke it. If you anticipate that
your application will be scripted for this purpose, you may want to provide scriptable behavior to
the appropriate nonmodel objects, such as windows and selections. If so, be sure to confine your
scripting support in nonmodel objects to those specific purposes.

MVC is described in more detail in Cocoa Design Patterns in Cocoa Fundamentals Guide.

Supply a Scripting Definition File 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

Provide Keys for Key-Value Coding

Recall that key-value coding (KVC) is a mechanism for accessing object properties indirectly by key,
where a key is just a string that represents a property name (such as "xPosition" for the horizontal
coordinate of a graphic object). Cocoa scripting relies on KVC, both for finding the specified objects
for a command to operate on and for getting and setting values in the specified objects.

Your application provides keys for its scriptable properties and elements in class definitions in its
sdef file. The property and element names themselves serve as keys, unless you specify a different
key explicitly. Cocoa scripting adjusts the key names as necessary according to the following rules,
which are consistent with standard Cocoa naming conventions for accessors:

 ■ For single-word property names, the name becomes the key. For example, an sdef property named
"width" would result in a key of "width".

 ■ For multiple-word property names, Cocoa capitalizes each word of the name except the first
word, then removes any spaces. For example, an sdef property named "desktop position"
would result in a key of "desktopPosition".

 ■ For element names, Cocoa specifies a key by making a plural from the name. For example, "word"
results in a key of "words" and "document" results in "documents".

You can override the default naming conventions to specify arbitrary key values where necessary.
For example, suppose you want a scripter to be able to use color in a script, but your application
refers to the underlying property as foregroundColor (as in the NSTextStorage class). You can
specify "foregroundColor" as the key for the "color" property by adding a cocoa key entry to the
sdef property definition:

<property name="color" code="colr" ...
<cocoa key="foregroundColor"/>

To support getting and setting scriptable properties and elements in your application, you define
accessor methods that match the keys in your sdef, as described in “Maintain KVC Compliance” (page
56). For additional information on default naming and working with keys, see “Cocoa Elements” (page
54).

Add the Scripting Definition File to Your Xcode Project

Once you have created an sdef file, you'll need to add it to the Xcode project for your application.
Place the file in the project folder (or other appropriate location) and use Project > Add to Project,
which also lets you add the sdef file to application targets. Adding the sdef file to the project
automatically adds it to the Copy Bundle Resources build phase, so it will be included in the
application.

36 Provide Keys for Key-Value Coding
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

Note: Double-clicking the sdef in the project opens it in a dictionary viewer window, where you can
examine its terminology. To view or edit the XML for the file, select the sdef file and choose File >
Open As > Plain Text File.

Turn On Scripting Support in Your Application

To turn on Cocoa’s built-in scripting support, you add the following key to your application's
Info.plist file:

<key>NSAppleScriptEnabled</key>
<string>YES</string>

To provide your application's scriptability information through an sdef file, you add a second key to
the property list to specify the sdef file. Here's the entry for the Sketch application:

<key>OSAScriptingDefinition</key>
<string>Sketch.sdef</string>

Important: To take advantage of Cocoa’s built-in support for Standard and Text suites, your sdef file
must include whichever classes, commands, and other information from those suites it will use. You
can obtain this information as described in “Suite Elements” (page 44).

If your application uses the script suite and script terminology format, you automatically gain access
to Cocoa's built-in terms by including the NSAppleScriptEnabled key, as shown above.

Implement Object Specifier Methods for Scriptable Classes

An object specifier locates a scriptable object or objects within the containment hierarchy in which
they reside.

When a script statement targets an application, the application may need to return a reply. For example,
the result of a get command is an object or a list of objects. When Cocoa returns these objects in the
reply Apple event, it does not return pointers to Objective-C objects, it returns object specifiers.

To obtain the object specifiers, Cocoa sends objectSpecifier messages to the objects to be returned.
Therefore, for any class of object that is part of your containment hierarchy of scriptable objects, you
must implement the objectSpecifier method. This method is declared in
NSScriptObjectSpecifiers, a category on NSObject that implements a version that just returns
nil.

For more information, including code examples, see “Object Specifiers” (page 63).

Turn On Scripting Support in Your Application 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

Use the Document Architecture

The NSApplication, NSDocument, NSDocumentController, NSWindow, and NSWindowController
classes form the basic structure for the Cocoa document architecture. Together with the terminology
defined in the Standard suite, these classes provide direct support for the standard AppleScript
document scripting model, including classes such as application, document, and window. When
you use these classes to implement a document-based application, that application automatically
supports a number of scripting features.

For example, the NSApplication, NSDocument, and NSWindow classes are KVC-compliant for standard
scriptable properties. NSApplication provides methods for accessing the application's documents
as an ordered list. The NSDocument class provides support for the close, print, and save commands
by implementing the handleCloseScriptCommand:, handlePrintScriptCommand:, and
handleSaveScriptCommand: methods. NSWindowScripting also implements default versions of
these methods, which in many cases pass control to the window's document. It also implements
methods for scriptable access to window attributes, such as the close box, title bar, and so on.

Applications that take advantage of Cocoa’s document architecture put themselves in a better position
to support scripting generally. A document in Cocoa applications typically owns and manages one
or more model objects of the application. It therefore provides a hub for scripted access to the model
objects in your application, which are the ones that load and save data.

Table 3-1 lists Cocoa classes that correspond to AppleScript classes in the Standard suite, along with
attributes and relationships (properties and elements) used by those classes.

Table 3-1 Standard suite attributes and relationships

RelationshipsAttributes (script term, if different)Objective-C and AppleScript class

class name (class), propertiesNSObject

Implements the item AppleScript class.
For any scriptable Objective-C class that
inherits from NSObject, the AppleScript
class it implements inherits from the item
class (and inherits the class property and
the properties property).

documents,
windows (both
accessible as
ordered
relationship)

name, active flag (frontMost),
version

NSApplication

Implements the applicationAppleScript
class.

location of the document's on-disk
representation (path); last
component of filename (name);
edited flag (modified)

NSDocument

Implements the document AppleScript
class.

documenttitle (name); various binary-state
attributes: closeable, floating,
miniaturized, modal, resizable,
titled, visible, zoomable

NSWindow

Implements the windowAppleScript class.

38 Use the Document Architecture
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

Access the Text Suite

The Text suite defines terminology that allows scripts to request or select textual elements at different
levels of granularity: character, word, paragraph, or entire body of text. The NSTextStorage class,
provided by the Application Kit, defines a corresponding set of methods for getting and setting
scriptable properties of NSTextStorage objects.

To gain access to this text scripting support, use an NSTextStorage object as the content for one of
your scriptable classes. The TextEdit sample code (available at <Xcode>/Examples/AppKit/TextEdit)
demonstrates a scriptable application that supports text scripting, as well as scripting support for
printing.

Note: The TextEdit sample does not use the sdef file format—it supplies its scriptability information
using the older style script suite and script terminology files.

Table 3-2 lists Cocoa classes for working with text, along with attributes and relationships used by
those classes.

Table 3-2 Text Suite Attributes and Relationships

RelationshipsAttributes (script term, if different)Class

attribute runs, characters,
paragraphs, text, words

font name (name), font size (size),
foreground color (color)

NSTextStorage

Access the Text Suite 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

40 Access the Text Suite
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Implementing a Scriptable Application

This chapter describes the steps you take to create a new scripting definition file and add scriptability
information for your Cocoa application.

Important: You can read about additional refinements to sdef usage in Cocoa applications for Mac
OS X v10.5 in the Scripting section of Foundation Release Notes.

If your scriptable application will run in versions of the Mac OS prior to version 10.4, it must supply
scriptability information in script suite and script terminology files. For more information, see
“Converting and Updating Scriptability Information” (page 117) and “Script Suite and Script
Terminology Files” (page 121).

This chapter uses examples from the sdef file Sketch.sdef from the Sketch sample application,
available from Apple.

For definitions of terms such as property and element used throughout this chapter, see the
“Glossary” (page 137).

Structure of a Scripting Definition File

A scripting definition file provides a statically stored representation of a set of scriptability terms and
the classes, constants, and other information used to support an application's scriptability. Here is
another look at the organization of the main XML structures used in the sdef format. All valid sdef
files follow this structure, differing primarily in the contents of the application-specific suite elements.

Structure of a Scripting Definition File 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Figure 4-1 Structure of an sdef file, revisited

dictionary

class

command

suite

property

element

record-type

value-type

enumeration

Note: The sdef information in this chapter is provided to demonstrate the general construction of
sdefs for scriptable Cocoa applications. It is not meant to be an exhaustive description of the sdef
format.

Code Constants Used in Scriptability Information

Four-character codes (or Apple event codes, or simply codes), are used throughout AppleScript to identify
various kinds of information. A four-character code is just four bytes of data that can be expressed
as a string of four characters in the Mac OS Roman encoding. For example, 'docu' is the code that
specifies the document class. The codes defined by Apple and the header files in which they are
defined are described in “Apple Event Constants” in Building an Apple Event in Apple Events
Programming Guide. They are also documented in Apple Event Manager Reference and AppleScript
Terminology and Apple Event Codes Reference.

You use codes in your sdef file to identify scriptable commands, classes, properties, elements, and
other items your application supports. When choosing a code, use an existing code from one of the
Apple headers for a standard object—for example, use 'capp' for an application object. If you need
to refer to the value in your code, you can use the corresponding Apple constant cApplication, but
in the sdef you simply use the string literal ('capp'). For new codes you define, you can define a
corresponding constant, if necessary.

42 Structure of a Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Important: If you use a term (or a code) that is defined in AppleScript's built-in terminology or in the
Standard suite, you must match it with the code (or the term) defined for it.

Apple reserves all values that consist entirely of lower-case letters and spaces. You can generally
avoid conflicts with Apple-defined codes by including at least one upper-case letter when choosing
your own codes.

You should always use a given code with the same term, and vice versa. While it is possible to use a
term-code pair for different items (for example, to have a property with the same name as a class),
this won't work for all elements, and you may want to avoid such reuse. Your codes do not have to
be unique with respect to those used in other applications; in fact, as noted above, it is recommended
that you use Apple-defined values for standard items.

Features Common to Many Scripting Definition File Elements

Except for the dictionary element (described below), most XML elements in an sdef have a name,
a code (or pair of codes), and a description. They may also include documentation and implementation
information. XML elements with the cocoa tag (described in “Cocoa Elements” (page 54)) contain a
particular kind of implementation information for Cocoa scripting. Some elements can be marked as
hidden, meaning they won’t be displayed when the dictionary is viewed in Script Editor or Xcode,
although they will be implemented. Elements can also include synonyms, which define an alternate
term or code for the main element.

An XML element in an sdef may refer to any other element in the sdef, regardless of whether they
are defined in the same suite element. For example, the word class defined in the Text suite can be
referred to in any other XML elements in any other suites in the same sdef file.

High-level XML Elements

All sdef files used to supply Cocoa scriptability information contain the high-level XML elements
described in the following sections.

XML Version and Document Type Definition

The first two lines of an sdef file, shown in the following listing, specify the XML version and DTD
(document type definition) file for the sdef format. You don't change these lines.

Listing 4-1 Version and document type in an sdef file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dictionary SYSTEM "file://localhost/System/Library/DTDs/sdef.dtd">

Dictionary Element

The root XML element in an sdef file is a dictionary element. A dictionary defines all the scriptability
information for one application. Every sdef file you create should contain one dictionary definition.
You typically name the dictionary after the application.

Structure of a Scripting Definition File 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

A dictionary element contains one or more suite elements. Most Cocoa applications include Cocoa’s
default suites (the Standard and Text suites), as well as one or more suites of their own scriptability
information.

The following listing shows the format for a dictionary element.

Listing 4-2 A dictionary element from an sdef file

<dictionary title="Sketch Terminology">
<!--

Contains one or more suite XML elements.
-->

</dictionary>

Suite Elements

A suite is a collection of related scriptability information. For example, Cocoa's Standard suite contains
default commands, enumerations, and other information, along with Cocoa scriptability information
used to implement support for the standard AppleScript commands. Cocoa also implements a Text
suite.

Your application supplies its own scriptability information in one or more suite XML elements. For
example, if your application provides scripting support for graphics-related features and
database-related features, you can provide separate graphics and database suites.

For most applications, the sdef should also include a suite element for the Standard suite and possibly
the Text suite as well. You can copy these suites from Sketch's sdef file, then delete the XML definitions
for commands, classes, and other items not supported by your application so they won't be displayed
in your dictionary. For example, if your application does not support printing, you should delete the
elements for the print command and the print settings record-type. Otherwise, users will see
those terms when they view your application terminology and will expect the application to support
them.

Important: You can read about additional refinements to sdef usage in Cocoa applications for Mac
OS X v10.5 in the Scripting section of Foundation Release Notes. For example, in Mac OS X v10.5, an
sdef for Cocoa’s Standard suite is provided in the file CocoaStandard.sdef in the location
/System/Library/ScriptingDefinitions, and you can use an xinclude statement to include that
file into your application’s sdef file.

A suite element contains one or more of the following elements: class, command, enumeration,
record-type, and value-type. These elements are described in “Add Information to the Scripting
Definition File” (page 46).

The following listing (from Sketch's sdef file) shows the XML format for a suite element.

Listing 4-3 A suite element for the Sketch suite

<suite name="Sketch Suite" code="sktc"
description="Sketch specific classes.">

<!--
Contains one or more of the following sdef elements:

class, command, enumeration, record-type, and value-type
-->

44 Structure of a Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

</suite>

Create a Scripting Definition File

One option for creating an sdef file is to simply take an existing sdef, such as the one distributed with
the Sketch application, and modify it for your application. You can do that with the following steps:

Important: As noted previously, starting in Mac OS X v10.5, the file CocoaStandard.sdef in the
location /System/Library/ScriptingDefinitions provides an sdef for Cocoa’s Standard suite,
and you can use an xinclude statement to include it into your application’s sdef file. For more
information, see the Scripting section of Foundation Release Notes.

1. Copy the file Sketch.sdef and rename it for your application (for example, MyApplication.sdef).

2. Edit the sdef file in a text editor (in Xcode, select the file and choose File > Open As > Plain Text
File to open the sdef as plain text). Rename the Sketch dictionary element, so it looks something
like the following:

<dictionary title="MyApplication Terminology">

3. Rename the Sketch suite element and change its code, so that it looks something like the following:

<suite name="MyApplication Suite" code="MyAp"
description="MyApplication information.">

4. Replace the scriptability information in the renamed suite element with the information for your
application, as described in “Add Information to the Scripting Definition File” (page 46).

Creating an sdef file from scratch is quite similar, and also includes copying information for the
Standard and Text suites. To create a new sdef file:

1. Create a plain text file with the extension .sdef (for example, MyApplication.sdef).

2. Add XML version and document type information. (All sdef files start with this information.)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dictionary SYSTEM "file://localhost/System/Library/DTDs/sdef.dtd">

3. Your sdef must contain a dictionary element as the root element. The dictionary is typically
named after your application, as shown in previous steps. The complete dictionary element
from Sketch is shown in “Dictionary Element” (page 43).

4. If your application supports any of the commands, classes, or other scriptability information
defined in the Standard and Text suites, as most do, you should copy the suite elements for
those suites into your sdef from an existing sdef file, such as Sketch.sdef.

Important: You should delete any information in the default Standard and Text suite elements
for features your application does not support.

For more information, see “Suite Elements” (page 44).

Create a Scripting Definition File 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

5. Add one or more suite elements for your application’s scriptability information.

6. Fill in the scriptability information in the suite element (or elements) for your application by
adding whichever of the following kinds of XML elements your application uses:

a. Classes (see “Class Elements” (page 46))

b. Commands (see “Command Elements” (page 50))

c. Enumerations (see “Enumeration Elements” (page 52))

d. Simple structures (see “Record-Type Elements” (page 52))

e. Simple types (see “Value-Type Elements” (page 53))

Your suite elements can refer to definitions from the Standard or Text suites that you've copied
into your sdef.

To add an sdef file to the project for your application, see “Add the Scripting Definition File to Your
Xcode Project” (page 36).

Add Information to the Scripting Definition File

The following sections provide descriptions and examples of the XML elements you’ll most commonly
add to the sdef file for your application. These examples are based on the sdef file from the Sketch
sample application, available from Apple.

As you add information to your sdef file, you can verify that the file is still valid at each step. Later,
when testing your application, you can examine the information that Cocoa scripting extracts from
your sdef file. For information on how to perform these steps, see “Debugging Scriptability
Information” (page 95).

Important: To test changes you make to an sdef file, you must quit the application, rebuild, and
relaunch it to pick up the changes. In addition, the Script Editor application caches scriptability
information, so you may need to quit and relaunch Script Editor as well.

Class Elements

You'll need to add a class element to your sdef file for each type of scriptable object in your
AppleScript object model—that is, for the objects scripters can access in scripts. A class element
defines an object class by listing the properties, elements, and supported commands for instances of
that class. Using the rich text class from the Text suite as an example, here is the information you
supply in a class element:

 ■ A human-readable name and description, which a scripter can view in the application's dictionary,
as well as a four-character code to identify the class. It may optionally specify a plural spelling:

46 Add Information to the Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

<class name="rich text" plural="rich text" code="ctxt" description="Rich (styled)
text">

If the plural name is omitted, it defaults to the name of the class with 's' appended.

 ■ The Cocoa or application Objective-C class that implements the class:

<cocoa class="NSTextStorage"/>

 ■ The commands the class can respond to, listed in a responds-to element. The rich text class
doesn't contain a responds-to element, but here is an example for Sketch's rectangle class, which
handles the rotate command with the rotate: method:

<responds-to name="rotate">
<cocoa method="rotate:"/>

</responds-to>

When Cocoa instantiates a command object to perform an AppleScript command (such as rotate),
if the command operates on an object (such as a rectangle) whose class definition includes a
responds-to entry, the command invokes the method specified in that entry (rotate:).

A class can respond to the standard AppleScript commands, such as count, move, delete, and
so on, without listing them in a responds-to element. For more information, see “Script
Commands Overview” (page 73).

 ■ A class also specifies its properties, elements, and possibly contents (described in subsequent
sections).

The following listing shows the full class definition for the rich text class.

Listing 4-4 A class element for the rich text class

<class name="rich text" plural="rich text" code="ctxt"
description="Rich (styled) text">

<cocoa class="NSTextStorage"/>
<type type="text"/>
<property name="color" code="colr" type="RGB color"

description="The color of the first character.">
<cocoa key="foregroundColor"/>

</property>
<property name="font" code="font" type="text"

description="The name of the font of the first character.">
<cocoa key="fontName"/>

</property>
<property name="size" code="ptsz" type="integer"

description="The size in points of the first character.">
<cocoa key="fontSize"/>

</property>
<element type="character"/>
<element type="paragraph"/>
<element type="word"/>
<element type="attribute run"/>
<element type="attachment"/>

</class>

Add Information to the Scripting Definition File 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Property Elements

For each class element in your sdef file, you'll need to add a property element for each accessible
property of that class. A property is a unique data member of an object—it is synonymous with an
attribute or to-one relationship. (A property element can also appear in a record-type element; see
“Record-Type Elements” (page 52) for more information.)

Using the color property of the rich text class as an example, here is the information you supply
in a property element:

 ■ A human-readable name and description, which a scripter can view in the application's dictionary,
along with a four-character code to identify the property and an entry to define its type. Basic
AppleScript types, such as boolean, integer, and text, are listed in Table 1-1 (page 20). You
can also use types declared in the suites provided by Cocoa (such as color), as well as types you
have defined with a value-type element (described in “Value-Type Elements” (page 53)):

<property name="color" code="colr" type="RGB color"
description="The color of the first character.">

 ■ A KVC key to be used by Cocoa scripting to access the property. By default, the property name
serves as the key. However, you can provide a substitute key with a cocoa key entry:

<cocoa key="foregroundColor"/>

Providing this key specification means that when a script asks for the color property of a rich
text object, Cocoa scripting will use the key "foregroundColor" to access the property from
the instance of NSTextStorage that implements the rich text object. If you did not provide this
key, Cocoa scripting would use "color" for the key.

For more information on naming and keys, see “Cocoa Elements” (page 54).

 ■ An optional entry that specifies access to the property. A property can be read-only (access="r"),
write-only (access="w"), or read-write (access="rw"), which is the default. (When you display
an sdef in a dictionary viewer, read-only access is shown as (r/o) and write-only as (w/o).
Read-write access, the default, is not shown.)

The color property of the rich text class doesn't contain an access entry (meaning access is
read-write, the default), but the name property of the window class from the Standard suite shows
how to specify read-only access:

<property name="name" code="pnam" type="text" access="r"
description="The full title of the window.">
<cocoa key="title"/>

</property>

This property defines a key attribute of <cocoa key="title"/>. So when a script asks for the
name property of a window object, Cocoa scripting uses the "title" key to get the appropriate
information from the window.

48 Add Information to the Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Element Elements

For each class element in your sdef file, you'll need to add an element element for each accessible
element of that class. An element defines a class of objects contained in another object and represents
a to-many relationship. For each of its defined elements, an object may reference zero or more items
of that type. For example, a rich text object can have any number of character elements, including
none. Element definitions define part of the object model for the application.

When you display an sdef in a dictionary viewer, an element element shows up as a link to the class
for its type. For example, an element that has the class type of window will show up as a link to the
window class.

The element elements shown in Listing 4-4 (page 47) for the rich text class (such as <element
type="character"/>) are all simple ones that take the default value for access (read-write) and key
(for example, "characters"), as described in “Cocoa Elements” (page 54).

Using the document element from the application class in the Standard suite, here is a slightly more
interesting example of the information you can supply for an element element:

 ■ The class type and an optional access entry. The access values are the same as those described
previously for property elements (read-only, write-only, or read-write, which is the default):

<element type="document" access="r">

 ■ An optional KVC key to be used by Cocoa scripting to access the element. By default, the plural
of the element type name serves as the key, but you can provide a substitute:

<cocoa key="orderedDocuments"/>

In this case, the application class (implemented by NSApplication) provides access to document
objects in the ordered manner expected by an AppleScript script using the key orderedDocuments.
This overrides the default naming for key-value coding access to this element, which would use
the key documents (made by generating the plural of the element name, document).

Contents Elements

For some classes, you may want to define a contents element. A contents element is similar to a
property element, except that the name and code are optional. If you omit them, they default to
"contents" and "pcnt", respectively.

Cocoa Scripting treats the contents property as the implied container for its class. Scripts may refer
to elements of the contents property as if they were elements of the class. For example, TextEdit
documents have a text contents property. Technically, the first word of the first document is word
1 of text of document 1 but, because text is an implied container, a script can also say word 1
of document 1.

For related information, see “Implicitly Specified Subcontainers” (page 71).

Add Information to the Scripting Definition File 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Command Elements

A command element represents an action or “verb” such as close that specifies an operation to be
performed. You will need to add a command element to your sdef file for each scriptable operation
your application supports, including those defined in the Standard suite and implemented by
NSScriptCommand and its subclasses. For the commands supplied by Cocoa, you can obtain information
for your sdef as described in “Create a Scripting Definition File” (page 45).

Some commands can be sent directly to the objects they operate on and some cannot. For more
information on the different kinds of commands and how to work with them, see “Object-first Versus
Verb-first Script Commands” (page 78).

Using commands from the Standard suite as examples, here is the information you supply in a command
element:

 ■ A human-readable name and description, which a scripter can view in the application's dictionary,
along with two four-character codes to identify the command. The following is from the quit
command:

<command name="quit" code="aevtquit" description="Quit the application.">

Note: The code for a command totals eight characters in length. Although the code can in fact be
an arbitrary value, the first half (aevt in this case) has historically represented the suite (the
Standard suite, formerly called the Core suite) and the second half (quit) the command. See
“Code Constants Used in Scriptability Information” (page 42) for more information on using
codes.

 ■ The Objective-C class, defined by Cocoa or the application, that Cocoa scripting should instantiate
to handle the command:

<cocoa class="NSQuitCommand"/>

If a command does not specify a command class, the default is the NSScriptCommand class. The
NSQuitCommand class is a subclass of NSScriptCommand, and any scripting class you define must
also be a subclass of NSScriptCommand or one of its subclasses. The command classes defined by
Cocoa are described in “Subclasses for Standard AppleScript Commands” (page 103).

 ■ An optional direct parameter element definition. A direct parameter is a special case of a
parameter element (described next) that does not include a name or identifying code and cannot
be hidden. If the direct parameter is a class, then it specifies the object to which the message is
sent. Otherwise, the message is sent to the application object, with the direct parameter's value
interpreted as a normal parameter, in which case it typically specifies the objects on which the
command is to operate.

50 Add Information to the Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Note: The direct parameter element, other parameter elements, and the result type element
(if any) in a command element correspond to parameter information supplied by an Apple event
for that type of command. When Cocoa scripting receives the Apple event, it creates an instance
of the specified command and initializes it with information from the event. It stores parameter
and result type information from the Apple event in an argument dictionary in the command
object.

Your application obtains arguments from the argument dictionary using the keys specified for
the corresponding parameters or result type in the sdef file. For information on how to do this,
see “Script Command Components” (page 75).

Here is the direct parameter element from the open documents command, which specifies a
list of documents to be opened by the application object:

<direct-parameter description="The file(s) to be opened.">
<type type="file" list="yes"/>

</direct-parameter>

This definition contains a text description and a data type declaration. The data for the direct
parameter is a list (list="yes"; the default is "no") of files to be opened.

(For information on how Cocoa applications handle the open command, see “How Cocoa
Applications Handle Apple Events” (page 105).)

 ■ Optional parameter element definitions for the command. These parameters are optional in the
sense that you need not define any parameters at all. However, if you do define a parameter, you
can also specify that it is optional (the default is "no", indicating the parameter is required). If a
script omits an optional parameter, the command should perform its default operation with
respect to that parameter.

A parameter element contains a human-readable name and text description, four-character code,
and type declaration for the data type of the parameter.

The quit command includes this parameter element, which specifies how to handle saving of
modified documents:

<parameter name="saving" code="savo" type="save options" optional="yes"
description="Whether changed documents should be saved before closing.">
<cocoa key="SaveOptions"/>

</parameter>

A parameter element also contains a dictionary key used by Cocoa scripting. In this case, the
line <cocoa key="SaveOptions"/> specifies a dictionary key to identify the entry in the
NSQuitCommand argument dictionary whose value is the saving parameter. The type (type="save
options") indicates that supported values for the savingparameter come from the save options
enumeration, defined in the Standard suite.

 ■ An optional result type element definition for the command, which specifies the type of value
generated when a command is executed. A result is a special case of a parameter definition that
has only type and description attributes and may not be hidden or optional. If the command
has no result, omit this element.

When you write Objective-C code to handle a command, it should return information of the type
specified by the result type element. If there is no result type specified, return nil.

Here is the result definition for the count command, which returns an integer value for the count.

<result type="integer" description="the number of elements"/>

Add Information to the Scripting Definition File 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Scriptability information for a command is packaged in the command object created to handle a
received Apple event. For information on how your application works with that information, see
“Script Command Components” (page 75), as well as other sections in “Script Commands” (page
73).

Enumeration Elements

You may need to define enumerated constants in your sdef. For example, you may want to provide
constants a scripter can use to specify information to a command. The Standard suite does this with
the save options enumeration, which provides values a scripter can use with either the close
command or the quit command to specify how to handle unsaved documents.

An enumeration element is a collection of symbolic constants, referred to as enumerators. As shown
in the following listing for the save options enumeration, you provide a name and a code for the
enumeration as a whole. You also provide a name, code, and description for each enumerator.

Listing 4-5 Definition of the save options enumeration

<enumeration name="save options" code="savo">
<enumerator name="yes" code="yes " description="Save the file."/>
<enumerator name="no" code="no " description="Do not save the file."/>
<enumerator name="ask" code="ask "

description="Ask the user whether or not to save the file."/>
</enumeration>

An enumeration element can optionally contain an inline entry, indicating how many of the
enumerators should be shown with a term that uses the enumeration when the dictionary defined
by the sdef is displayed. By default (if you do not use the inline element), all enumerators are shown.
If you specify inline="0", just the enumeration name (save options, in the example above) is
displayed. However, a user viewing the definition can click the enumeration name to view the actual
enumeration definition.

The following line shows how to modify the save options definition to limit the display to just the
first two enumerators (yes/no).

<enumeration name="save options" code="savo" inline="2">

Record-Type Elements

If you need to define a simple structure, rather than a class, for your sdef, you can add a record-type
element. For example, the following listing shows the record-type definition for print settings
from the Standard suite. The cocoa key entries in this definition match the names that NSPrintInfo
uses in its attributes dictionary.

In addition to property name, code, and description, a record-type element contains “Property
Elements” (page 48), described previously. You can use record-type elements you've defined
anywhere you specify the type of an element, property, or parameter in your sdef.

Listing 4-6 Definition of the print settings record-type

<record-type name="print settings" code="pset">
<property name="copies" code="lwcp" type="integer"

52 Add Information to the Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

description="the number of copies of a document to be printed">
<cocoa key="NSCopies"/>

</property>
<property name="collating" code="lwcl" type="boolean"

description="Should printed copies be collated?">
<cocoa key="NSMustCollate"/>

</property>
<property name="starting page" code="lwfp" type="integer"

description="the first page of the document to be printed">
<cocoa key="NSFirstPage"/>

</property>
<property name="ending page" code="lwlp" type="integer"

description="the last page of the document to be printed">
<cocoa key="NSLastPage"/>

</property>
<property name="pages across" code="lwla" type="integer"

description="number of logical pages laid across a physical page">
<cocoa key="NSPagesAcross"/>

</property>
<property name="pages down" code="lwld" type="integer"

description="number of logical pages laid out down a physical page">
<cocoa key="NSPagesDown"/>

</property>
<property name="error handling" code="lweh" type="printing error handling"

description="how errors are handled">
<cocoa key="NSDetailedErrorReporting"/>

</property>
<property name="fax number" code="faxn" type="text"

description="for fax number">
<cocoa key="NSFaxNumber"/>

</property>
<property name="target printer" code="trpr" type="text"

description="for target printer">
<cocoa key="NSPrinterName"/>

</property>
</record-type>

Value-Type Elements

If you need to define a new basic type for your scripting support, you can do so with a value-type
element. A value-type element defines a simple type that has no properties or elements accessible
through scripting. The following listing shows the value-type definition for color from the Text suite.
In addition to the type name and code, Cocoa value-type definitions should specify a corresponding
Objective-C class, such as NSData or NSNumber (or your class that supports your value-type). The built
in AppleScript types supported by Cocoa are listed in Table 1-1 (page 20).

You can use value-type elements you've defined anywhere you specify the type of an element,
property, or parameter in your sdef.

Listing 4-7 Definition of the color value-type

<value-type name="RGB color" code="cRGB">
<cocoa class="NSColor"/>

</value-type>

Add Information to the Scripting Definition File 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

Cocoa Elements

Some of the information in your sdef describes implementation details from your application. For
example, property names in the sdef serve as KVC keys for accessing property values of scriptable
application objects, as described in “Provide Keys for Key-Value Coding” (page 36) and “Maintain
KVC Compliance” (page 56). Similarly, your sdef contains other information that directly identifies
classes or methods that are part of your application's scripting support.

To supply this implementation information for use by Cocoa scripting, you use cocoa elements. A
cocoa element can contain the following attributes:

 ■ class: Specifies an Objective-C class name for class elements and command elements.

 ■ key: Specifies a string key for a dictionary (NSDictionary) of command parameters, or a key to
be used by Cocoa scripting to access a property or element through key-value coding.

 ■ method: Specifies an Objective-C method name. Used to specify responds-to methods for class
elements.

See the previous sections in this chapter for examples of these attributes.

Cocoa scripting will generate default keys for property and element attributes and for commands, if
you do not specify them. For a property, it capitalizes each word of the property’s name except the
first word, then removes any spaces. For an element, it specifies the plural of the element type. For a
command, the default is NSScriptCommand.

The following table shows some examples of default naming.

Table 4-1 Default naming for attributes of cocoa elements

Default valueAttribute

currentResolution (key name)<property name="current resolution">

monitors (pluralized key name)<element type="monitor">

NSScriptCommand (class name for command)<command name="someCommand"...

(with no command class specified)

54 Add Information to the Scripting Definition File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Preparing a Scripting Definition File

This chapter describes how to work with Cocoa scripting to allow it to get and set the values of
properties and elements in your scriptable application. It also provides examples of KVC-compliant
accessor methods.

Overview of Getting and Setting Values

Allowing scripters to get and set values of scriptable objects is an important part of scriptability. In
your sdef, you define keys for scriptable properties and elements. In your application, properties are
equivalent to attribute and to-one relationships, while elements are represented by to-many
relationships.

Cocoa scripting supports getting and setting values through the use of key-value coding (KVC). For
your application to work with this support, you must comply with KVC conventions in naming the
keys in your sdef file and the corresponding accessor methods (or instance variables) in your scriptable
classes:

 ■ In your sdef file, you define keys for the scriptable properties and elements of your scriptable
classes, as described in “Provide Keys for Key-Value Coding” (page 36). Cocoa scripting uses
these keys when it invokes KVC to get and set values.

 ■ In your application code, accessors (or instance variables) for scriptable properties and elements
must match the keys specified in your sdef file and the naming conventions described in “Maintain
KVC Compliance” (page 56).

In handling get and set scripting commands, Cocoa scripting takes care of the following automatically:

 ■ It provides the NSGetCommand and NSSetCommand classes and automatically instantiates the
appropriate object when your application receives a get or set Apple event. You rarely need to
subclass these classes.

 ■ It automatically invokes key-value coding (KVC) methods to get or set values when a get or set
command is executed—your application doesn't need to call KVC methods directly.

For a description of how Cocoa scripting and an application work together to perform a set command,
see “A Real World Scripting Example” (page 25).

Overview of Getting and Setting Values 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and
Elements

Key-Value Coding and Cocoa Scripting

When Cocoa scripting uses KVC to get and set values, it calls one of several KVC methods, depending
on the type of relationship involved (properties or elements) and on whether the operation is a get
or a set. These include two primitive instance methods of the NSObject class: valueForKey: and
setValue:forKey:. These methods are used primarily in dealing with properties, though they can
also handle element collections in a simple but potentially inefficient way. For more efficient handling
of collections, KVC invokes mutableArrayValueForKey:.

These KVC methods in turn search your method list for specific methods in a specific order, as
described in Key-Value Coding Programming Guide. Templates for the methods KVC looks for are
described in “Maintain KVC Compliance” (page 56).

Your application doesn't invoke or override KVC methods—it just names its accessor methods or
instance variables so that KVC can find them.

Maintain KVC Compliance

For Cocoa scripting to work successfully with KVC, every scriptable class in your application must
be KVC-compliant for every key corresponding to its scriptable properties and elements. To ensure
this, you must define keys in your sdef file as described in “Provide Keys for Key-Value Coding” (page
36), and you must adhere to the following naming conventions for your accessor methods or instance
variables (where you replace <key> or <Key> with the key string to construct the actual method
name):

 ■ For properties (attributes and to-one relationships), you implement <key> and, if the property is
not read-only, set<Key>: accessors.

 ■ For element classes (to-many relationships), you implement <key> and, if the element class is not
read-only, insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex: methods.
For better performance, you may also need to implement
replaceObjectIn<Key>AtIndex:withObject:.

If there is no way to efficiently implement <key> (for example, if the value of the to-many
relationship is not naturally stored in an instance of NSArray), you can instead implement
countOf<Key> and objectIn<Key>AtIndex:. KVC's valueForKey: and
mutableArrayValueForKey:, which are invoked by Cocoa scripting, will return collection proxies
that invoke your methods when appropriate.

 ■ To let Cocoa automatically create an array proxy to handle element collections, you can implement
countOf<Key> and objectIn<Key>AtIndex: methods.

If the to-many relationship is mutable, you should also implement
insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex: methods.

And for better performance, you may need to implement
replaceObjectIn<Key>AtIndex:withObject:.

KVC invokes these methods regardless of the class used to model the relationship, so you can
use array-based or non-array-based collections, including custom collections you have defined.
But it's up to you to implement the methods to work with your underlying data. The code should
be quite straightforward; if you are working with arrays, it often requires just a call to an array
method that corresponds to the accessor method.

56 Key-Value Coding and Cocoa Scripting
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

 ■ As an alternative to implementing accessor methods, you can take advantage of KVC's direct
instance variable access feature. You do this by merely giving an instance variable a name that
matches a key defined in your sdef, with an optional leading underscore—for example, xPosition
or _xPosition,

Instance variables corresponding to writable element classes must be of type NSMutableArray if
you do not implement the insertObject:in<Key>AtIndex: and
removeObjectFrom<Key>AtIndex: methods.

 ■ For element classes that can be accessed by name or ID (that is, the class has properties identified
by the four character code 'pnam' or 'ID '), you can optimize the evaluation of name and ID
specifiers by implementing the methods valueIn<Key>WithName: or
valueIn<Key>WithUniqueID:, respectively.

Important: In your implementation of valueIn<Key>WithName:, string matching should honor
the current AppleScript considerations, such as considering case or ignoring diacriticals.
Name data may come to your application as plain or Unicode text, so be prepared to handle
either, even if you do not use full Unicode internally.

In your implementation of valueIn<Key>WithUniqueID:, ID data should not honor the current
AppleScript considerations, such as considering case. Treat IDs as always case-insensitive, or
as always case-sensitive if case is relevant (that is, if "ijkl" and "IJKL" are both valid and
different).

If you follow standard Cocoa naming conventions for accessors, you're already on the way to KVC
compliance:

 ■ A “get” accessor should start with a lower case letter and have the same name as the variable it
is accessing—for example, xPosition.

 ■ A “set” accessor should start with “set”, followed by the name of the variable, with the first letter
capitalized—for example, setXPosition.

For examples of KVC-compliant accessor methods based on the templates described here, see “Sample
KVC-Compliant Accessor Methods” (page 59).

On Omitting KVC Accessors

The use of accessor methods supports data encapsulation, a standard coding practice. However, in
cases where you are providing KVC access to your data solely to support scriptability (or Cocoa
bindings), encapsulation may be less important, and you might choose to omit accessor methods
altogether. If so, you need only maintain KVC compliance in naming your instance variables to match
the keys in your sdef.

You might also choose to use direct instance variable access as a convenience during prototyping or
feasibility testing, then add accessor methods later in the development cycle.

Key-Value Coding and Cocoa Scripting 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

Performance Considerations With KVC

KVC access to simple values is fast enough that it should not be a performance bottleneck. In general,
KVC is smart enough to search for the most efficient methods your classes provide that match the
KVC naming conventions. For example, for to-many relationships, KVC looks first for collection
mutation methods, then for setter methods; if neither is available, it tries for direct instance variable
access.

“Maintain KVC Compliance” (page 56) describes the collection methods you should implement for
best performance (insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex:).

You can instead merely implement a setter method (as in, set<Key>:) and KVC will invoke it, but
be aware of what KVC, as used by Cocoa Scripting, must do in that case: for an insertion or removal,
it must get the value array, make a mutable copy of it, mutate the copy, and then set it again. This
can be slow.

Interaction With Key-Value Observing

Because Cocoa scripting invokes setValue:forKey: instead of takeValue:forKey: (a deprecated
KVC method), changes to model objects made by AppleScript scripts are observable using automatic
key-value observing. However, if the container in question overrides takeValue:forKey:, Cocoa
scripting invokes takeValue:forKey: for backward binary compatibility.

Note: In Mac OS version 10.3, Cocoa scripting did not use key-value coding methods introduced in
that version of the OS, such as setValue:forKey: and mutableArrayValueForKey:, so automatic
key-value observing (KVO) was not supported for model object changes caused by scripts.

Cocoa scripting does not depend on KVO. However, if your application uses Cocoa bindings, you
should follow the guidelines described in Key-Value Observing Programming Guide. For related
information in this document, see “Interaction With Cocoa Bindings and Core Data” (page 23).

KVC Conversion of Scalar and Structure Values

The default implementations of the KVC methods valueForKey: and setValue:forKey: provide
support for automatic object wrapping of scalar data types such as BOOL, char, double, float, int,
and structures such as NSPoint, NSRange, and NSRect. When Cocoa scripting invokes valueForKey:
to get a value, KVC automatically converts the value to an NSNumber object (for scalars) or NSValue
object (for structures) if necessary.

Similarly, setValue:forKey: determines the data type required by the appropriate accessor or
instance variable for the specified key. If the data type is not an object, then the value is extracted
from the passed object using the appropriate NSNumber orNSValue method.

For more information, including a table of the supported types, see Scalar and Structure Support in
Key-Value Coding Programming Guide.

58 Key-Value Coding and Cocoa Scripting
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

Scripting Additions to KVC

Cocoa defines the category NSScriptKeyValueCoding to provide scripting-related additions to the
key-value coding methods implemented in NSObject. The methods in this category on NSObject
provide additional capabilities for working with key-value coding, including getting and setting key
values by index in a collection and coercing (or converting) a key value. Additional methods allow
the implementer of a scriptable container class to provide fast access to elements that are referenced
by name and unique ID.

Sample KVC-Compliant Accessor Methods

Suppose you have a DrawingCanvas class that you want to make scriptable. In a simple scenario, you
want scripts to be able to access the properties of graphical shapes associated with a canvas object,
and you also want scripts to be able to access a boolean value indicating whether the canvas has been
modified. Assume that scripters can get and set properties of a shape, but can only read the current
value of the modified property.

First, you specify the keys "shape" and "modified" in the scriptability information for your
application. To do this, you could define the following entries in the class definition for the drawing
canvas scriptable object class in your sdef file:

<property name="modified" code="iMod" type="boolean" access="ro"
description="Has the canvas been modified since the last save?">

</property>
<element type="shape">

The two keys also become instance variables of the DrawingCanvas class. Remember that Cocoa
scripting pluralizes the key for an element, as shown in the declared array variable, shapes. However,
the instance variable names don't have to match the keys if you provide complete KVC-compliant
method coverage.

@interface DrawingCanvas: NSObject <NSCoding> {
NSMutableArray *shapes; // An array of shape objects
BOOL modified; // Whether the canvas has been modified
// ...

The following sections provide sample accessors for these properties, based on the KVC accessor
method templates described in “Maintain KVC Compliance” (page 56). Depending on the
implementation, some examples might require additional application-dependent code that is not
shown here.

Single-Value Access

To provide scriptable access to the boolean property of the DrawingCanvas class, based on the key
"modified", you can define a KVC-compliant getter method like the following:

Listing 5-1 Boolean property getter

- (BOOL)modified
{

Sample KVC-Compliant Accessor Methods 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

// If necessary, obtain or update value
return modified;

}

If the modified property were settable (if the property were defined as read/write, the default), you
could define a KVC-compliant setter method like the following:

Listing 5-2 Boolean property setter

- (void)setModified:(BOOL)flag
{

modified = flag;
}

As noted in “On Omitting KVC Accessors” (page 57), in cases where you are providing KVC access
to your data solely to support scriptability, you might choose to omit accessor methods. If so, you
need only name your instance variables to match the keys in your sdef—in this case, modified or
_modified.

Collection Value Access

For simple scriptable access to a to-many relationship, you can implement accessor methods like those
in Listing 5-3. However, the setter method may not be efficient, for reasons described in “Performance
Considerations With KVC” (page 58).

Listing 5-3 Simple array element accessors

- (NSArray *)shapes
{

return [[shapes retain]autorelease];
}
- (void)setShapes:(NSArray *)newShapes
{

if (shapes != newShapes)
{

[shapes release];
shapes = [newShapes copy];

}
}

You can support KVC access for to-many relationships by implementing indexed accessor methods.
These accessors work whether or not the related objects are stored in an array—Cocoa automatically
creates an array proxy for you if needed.

For best performance, you should implement the two KVC-compliant methods shown in the next
listing, instead of the setShapes: method:

Listing 5-4 Array element insert/delete accessors (by index)

-(void)insertObject:(id)anObject inShapesAtIndex:(unsigned)index
{

[shapes insertObject:anObject atIndex:index];
}

-(void)removeObjectFromShapesAtIndex:(unsigned)index

60 Sample KVC-Compliant Accessor Methods
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

{
[shapes removeObjectAtIndex:index];

}

And finally, to provide even more efficient mutation of the array, you can also implement a
KVC-compliant method like the following:

Listing 5-5 Array element replacement accessor (by index)

-(void)replaceObjectInShapesAtIndex:(unsigned)index withObject:(id)anObject
{

// possible implementation-specific code
[shapes replaceObjectAtIndex:index withObject:anObject];

}

Special Accessor Methods

Sometimes an accessor method must do something special to support scripting. For example, consider
the documents managed by a document-based application. When a script asks for an application’s
documents, the application could invoke the documentsmethod of the NSDocumentController object
to obtain all currently opened documents, ordered by creation.

However, this is not what is expected by the scripter. AppleScript has the notion of a first document
and a last document (as well as front document, document 1, and related notations), and this
implies an ordering of documents visible on the screen. The NSApplication class therefore implements
the orderedDocuments method, which, in response to a request for its documents, returns an array
of document objects, where the position of a document in the array is based on the front to back
ordering of its associated (on-screen) window.

Sometimes an application's object model provides scripting access to objects at a level of granularity
that would be impractical to implement with individual objects. For example, an AppleScript script
can ask for the characters of a text document, but it would be quite expensive for an application to
represent each character as an object. The NSTextStorage class handles this case with a special accessor
method, characters

Support for the Properties Property

It is common for good scriptable applications to make the complete set of properties for each scriptable
object available in the form of a single record that is the value of the properties property. A category
on NSObject (defined in the Foundation file NSObjectScripting.h) declares the following public
KVC accessor methods for this property:

- (NSDictionary *)scriptingProperties;
- (void)setScriptingProperties:(NSDictionary *)properties;

For all scriptable classes that inherit from item, Cocoa scripting provides automatic scriptability
support for the properties property. So if your scriptable classes that descend from NSObject provide
KVC-compliant accessors for their individual scriptable properties and elements, you will automatically
have support for the properties property.

Special Accessor Methods 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

Note: For applications that supply scriptability information through script suite and script terminology
files, the AbstractObject scriptable class (which corresponds to NSObject) specifies a base class that
scriptable classes can inherit from. Cocoa Scripting uses this class, declared in the Foundation files
NSCoreSuite.scriptSuite and NSCoreSuite.scriptTerminology, to provide support for the
properties property.

Coercion

Coercion is the process of converting data from one type to another. AppleScript provides many
default (or built-in) coercions. For example, when it executes the statement set theValue to "20.05"
as number, AppleScript converts the string "20.05" to the numeric value 20.05.

Cocoa scripting supports the types shown in “Built-in Support for Basic AppleScript Types” (page
20), and makes use of the default coercions as needed when it handles Apple events received by a
Cocoa application. For information on the default coercions, see Default Coercion Handlers in Apple
Events Programming Guide.

62 Coercion
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Getting and Setting Properties and Elements

An object specifier locates a scriptable object within an application’s containment hierarchy. Cocoa
scripting makes use of object specifiers to find objects in your application while executing a script
command and to return information requested by a script. This chapter describes how Cocoa scripting
uses object specifiers and how your application provides object specifiers for its scriptable objects.

Overview of Object Specifiers

An AppleScript script contains statements that manipulate the objects in an application's AppleScript
object model. The part of a script statement that identifies an object, such as fourth word, is called
a reference. A reference rarely occurs in isolation. Usually a script statement consists of a series of
references, preceded by a command and typically connected to each other by in or of, such as get
the fourth word in the third paragraph of document "Quarterly Report".

An Apple event encapsulates the operation specified by a script statement and delivers it to the
application. For Apple events that correspond to commands defined in the application's sdef file,
Cocoa scripting converts the Apple event into a script command that contains all the information
necessary to perform the operation.

To describe the objects specified by a reference, the command uses object specifiers. Where a script
statement identifies an object in the AppleScript object model, an object specifier identifies the
corresponding object in the application itself. When the application must return an object to the calling
script, Cocoa scripting also uses an object specifier, supplied by your application, to identify the object.

There is not always a one-to-one correspondence between AppleScript objects and objects in your
application's implementation. For example, a character object in a script does not have a
corresponding character object in the application.

Object Specifiers and KVC

Cocoa scripting relies on key-value coding (KVC) when evaluating object specifiers. When an
application first needs to work with scriptability information, Cocoa scripting loads information from
the application's sdef file into a global instance of NSScriptSuiteRegistry. At that time, it registers
class descriptions for your scriptable classes. As a result, Cocoa and your application can obtain script
class description information, including keys, about scriptable classes for use with object specifiers.

For more information, see “Loading Scriptability Information” (page 21).

Overview of Object Specifiers 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

When to Implement an Object Specifier Method

Any class in your application that is part of the containment hierarchy for your scriptability support
will most likely require an object specifier method. When a script statement targets your application,
the application may need to return a reply. For example, the result of a get command is often an
object or a list of objects. When Cocoa returns these objects in the reply Apple event, it does not return
pointers to Objective-C objects, it returns object specifiers that locate scriptable objects within the
containment hierarchy. As part of building these specifiers, Cocoa calls on your scriptable objects to
supply specifiers for themselves.

You provide an object specifier for a scriptable class by implementing the objectSpecifier method.
That method is defined in NSScriptObjectSpecifiers (note the trailing "s"), a category on NSObject
that implements a version that just returns nil.

About Object Specifier Classes

An objectSpecifier method returns an instance of one of the classes listed in Table 6-1 (page 67),
which are subclasses of NSScriptObjectSpecifier. Classes such as NSNameSpecifier and
NSUniqueIDSpecifier represent the standard AppleScript reference forms, so you shouldn't need
to subclass them. You pick the best version for the object you need to specify—see Technical Note
TN2106, "Scripting Interface Guidelines," for guidance. For example, if the object has a unique name
or unique ID, use the corresponding specifier type. For an unnamed object with no ID, such as a
rectangle or a paragraph of text, you may want to return an index specifier.

Most subclasses of NSScriptObjectSpecifier have a specific initializer that you should use.

Most initializer methods for an object specifier class include the following parameters:

 ■ (NSScriptClassDescription *)classDescription

Here you supply a class description for the container class of the specified object. You must always
supply a class description for a specifier.

If you already have an object specifier for a container, you can obtain a class description for that
container object using the NSScriptObjectSpecifiermethod keyClassDescription, as shown
in Listing 6-1 (page 69).

When you can get the class of a container object (for example, by invoking [NSApp class]), you
can use the classDescriptionForClassmethod to determine the container description, as shown
in Listing 6-2 (page 70). If you have an instance of the container’s class, you can instead use the
NSObject instance method classDescription to obtain a container description.

 ■ (NSScriptObjectSpecifier *)specifier

Here you supply an object specifier for the parent container of the specified object. You typically
obtain it by invoking the objectSpecifier method of the containing object.

An object that has no container specifier is known as the top-level specifier. In most cases, the
top-level specifier is the application itself. You can specify the top-level specifier by passing nil
for this parameter. (That is the only time you can pass nil for a container specifier, and even then
you must specify a container class description.)

 ■ (NSString *)key

64 Overview of Object Specifiers
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

http://developer.apple.com/technotes/tn2002/tn2106.html

Here you supply a key that tells the parent container how to find the specified object. The key
you pass is based on information supplied in your sdef file. For example, Sketch defines the
"graphics" key to identify the graphics array in a Sketch document. (Sketch actually defines the
singular "graphic" as an element of the document class, but Cocoa scripting applies its default
rules, described in “Provide Keys for Key-Value Coding” (page 36), to convert this key to the
string "graphics".)

For an annotated example of an objectSpecifier method, see “An Object Specifier Method for a
Rectangle in Sketch” (page 69).

A Closer Look at an Object Specifier

Consider the object model and containment hierarchy diagram for the Sketch sample application,
shown in Figure 6-1. The left side of this illustration shows scriptable Sketch objects, the right side
the corresponding application containment hierarchy. For a script statement that identifies a rectangle
object on the left, Cocoa scripting supplies an object specifier that locates the rectangle and its containing
document within the containment hierarchy on the right.

Figure 6-1 Sketch object model and containment hierarchy revisited

application
 documents

document "SketchDocOne"
 graphics

rectangle 1

rectangle 2

circle 1

circle 2

SKTRectangle

SKTRectangle

SKTCircle

SKTCircle

NSApplication
 orderedDocuments (array)

SKTDrawDocument
 graphics (array)

Each object specifier contains a reference to its containing object, which allows object specifiers to
represent objects that can be deeply nested within an object hierarchy. The outermost container,
represented by a nil object specifier, is usually the application object, although it can be an object
specifier involved in a whose clause (NSWhoseSpecifier) or the container for a range evaluation.

Figure 6-2 shows the nested object specifiers for the statement first rectangle in document
"SketchDocOne":

Overview of Object Specifiers 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Figure 6-2 Nested object specifiers for a Sketch rectangle

SKTRectangle

NSApplication
 orderedDocuments (array)

SKTDrawDocument
 graphics (array)

Name specifier

Container: nil (Application)
Key: "orderedDocuments"
Name: "SketchDocOne"

Index specifier

Container: Object specifier for "SketchDocOne"
Key: "graphics"
Index: 0 (zero-based)

Here is how to interpret the information in this figure:

1. An index specifier specifies the first rectangle, which is an object of class SKTRectangle. The
specifier has these components:

 ■ The index for the specified object, which in this example has the value 0.

This is the zero-based index of the specified rectangle in its containing array. Because Sketch's
graphics arrays can contain other kinds of graphics, the index for the first rectangle won't
always have the value 0—for example, if preceded by four circle graphics, the index would
have the value 4.

 ■ A key that specifies the collection for the specified object, which in this example has the value
"graphics".

The graphics array is the collection for the indexed object. The key matches information
provided by your sdef and made available in the running application as described in “Object
Specifiers and KVC” (page 63).

 ■ A container reference that specifies the parent for this object specifier. In this example the
container is the object specifier for the document "SketchDocOne".

2. A name specifier specifies the document containing the first rectangle, which is an object of class
SKTDrawDocument. The specifier has these components:

 ■ The name for the specified object, which in this example has the value "SketchDocOne".

 ■ A key that specifies the collection for the specified object, which in this example has the value
"orderedDocuments".

The application's ordered array of documents is the collection for the named document,
though in this case, the order is unimportant.

 ■ A container reference that specifies the parent for this object specifier. In this example, the
reference is nil, specifying that the array of documents is contained by the application
object.

A script statement, and thus an object specifier, can specify objects that don't currently exist in
the application, causing an error condition when the script is executed. For example, the specified
document may not exist, or it may not contain the specified graphic. Code within a command
class should check for and be prepared to handle common error conditions. (Validation is not
considered appropriate for KVC getter and setter methods.)

66 Overview of Object Specifiers
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Evaluation of Nested Specifiers

When Cocoa scripting prepares a script command for a script that contains a reference, it converts
the reference into a nested series of object specifiers, such as the ones shown in Figure 6-2 (page 66).
It packages these nested object specifiers as a receiver of the command (or in some cases as an argument
of the command). When the command is executed, the application evaluates the object specifiers in
its own context to discover the specified objects.

Evaluation starts with the top-level specifier and proceeds down the chain of object specifiers,
evaluating and resolving each until the identity of the final, nested child object is determined. This
object is a receiver (or receivers) of the command or one of the command’s arguments. Key-value
coding is used as the standard mechanism for evaluation. An object specifier queries its evaluated
container for the value of the key associated with the object specifier.

Evaluation of object specifiers is described in more detail in “Script Commands and Object
Specifiers” (page 76).

Cocoa Object Specifier Classes

AppleScript recognizes many types of references. For the standard reference forms, Cocoa defines
subclasses of the abstract class NSScriptObjectSpecifier. These classes are shown in Table 6-1.
Each of these object specifier classes deals with identifying objects in collections (NSArray objects).

These classes are unusual in that they provide one of the few examples where your application
routinely creates instances of scripting classes defined by Cocoa. You do that in the object specifier
methods for your scriptable classes. For more information on these and related classes, see also Table
9-2 (page 101).

Table 6-1 AppleScript reference forms and corresponding object specifier classes

DescriptionCocoa ClassReference
forms

Specifies an arbitrary object in a collection.

Example: any word, some document

NSRandomSpecifierArbitrary

Specifies every object in a particular container that
matches specified conditions defined by a Boolean
expression.

Example: words whose color is blue or document
whose name is "Letter to Santa Claus"

NSWhoseSpecifierFilter

Specifies an object in a collection by unique ID.

Example: window id 739

NSUniqueIDSpecifierID

Specifies an object in a collection by index.

Examples: word 5, front document

NSIndexSpecifierIndex

Cocoa Object Specifier Classes 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

DescriptionCocoa ClassReference
forms

Specifies the middle object in a collection.

Example: middle word of paragraph 2

NSMiddleSpecifierMiddle

Specifies an object in a collection by name. See class
documentation for evaluation mechanism.

Example: window named "Report"

NSNameSpecifierName

Specifies an attribute (property) or relationship of an
object.

Example: color (Property), every graphic of the
front document (Every)

NSPropertySpecifierProperty,

Every

Specifies a range of objects in a collection.

Example: words 5 through 10

NSRangeSpecifierRange

Specifies the position of an object in relation to another
object.

Example: before word 5

NSRelativeSpecifierRelative

It is unlikely that you will need to subclass any of these classes, as they already cover the standard
set of valid AppleScript reference forms. However, if you do need to create a subclass, you must
override the primitive method indicesOfObjectsByEvaluatingWithContainer:count: to return
indices to the elements within the container whose values are matched with the child specifier's key.
In addition, you may need to declare any special instance variables and implement an initializer that
invokes the designated initializer of its superclass,
initWithContainerClassDescription:containerSpecifier:key:, and initializes these variables.

In addition to the concrete subclasses of NSScriptObjectSpecifier shown in Table 6-1, Cocoa
provides other classes that assist the object-specifier classes in evaluation. Instances of these classes
help to indicate relative position and represent Boolean and logical expressions in which object
specifiers are involved.

A script statement can also contain filter references, which identify objects in containers based on the
conditions specified in Boolean expressions. These expressions can be linked together by logical
operators (AND, OR, NOT) and return the appropriate true or false value. Filter references begin
with the words whose or where, as in get words where color is blue or color is red and
rectangles whose x position is greater than 45. These references can contain phrases such
as is, is equal to or is greater than, as well as their symbolic equivalents (such as = and >).

Instances of the NSWhoseSpecifier class represent filter reference forms in Cocoa. These instances
hold a “test” instance variable, which is an NSScriptWhoseTest object.

For information about these and related classes, see “Object Specifiers, Logical Tests, and Related
Categories” (page 100).

68 Cocoa Object Specifier Classes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Implementing the Object Specifier Method

The following sections provide examples of how to implement the object specifier defined by
NSScriptObjectSpecifiers.

An Object Specifier Method for a Rectangle in Sketch

Listing 6-1 shows how the Sketch sample application (available from Apple) implements the
objectSpecifier method for the SKTGraphic class.

Listing 6-1 An object specifier method for a rectangle

- (NSScriptObjectSpecifier *)objectSpecifier{
// 1NSArray *graphics = [[self document] graphics];
// 2unsigned index = [graphics indexOfObjectIdenticalTo:self];

if (index != NSNotFound) {
// 3NSScriptObjectSpecifier *containerRef = [[self document] objectSpecifier];

return [[[NSIndexSpecifier allocWithZone:[self zone]]
initWithContainerClassDescription:[containerRef keyClassDescription]

// 4containerSpecifier:containerRef key:@"graphics" index:index] autorelease];
} else {

// 5return nil;
}

}

Here’s a description of how this method provides an object specifier for a graphics object. The returned
specifier consists of an index specifier for the graphic in its container, and a container specifier for
the document that contains the array of graphics:

1. From its document, it gets the array of graphics and determines the index of the receiving graphic,
if it is contained in the array.

2. It gets the object specifier of the document that contains the graphic.

Sketch defines the SKTDrawDocument class as a subclass of NSDocument. The object specifier
method for NSDocument returns an instance of NSNameSpecifier that identifies the document
by name within the application's array of ordered documents.

3. It creates and initializes an index specifier (type NSIndexSpecifier) for the receiving graphic
and returns it.

The specifier locates the graphic by index within the graphics in its document. Although an
AppleScript script asks for indexed items as though they are one-based, this index specifier, which
locates objects within an array that correspond to the specified items, works with zero-based
values. For information about the other parameters, see “About Object Specifier Classes” (page
64).

Implementing the Object Specifier Method 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Specifying the Application Object as a Container

To specify the application object as the top-level container for a specifier, you can use code like the
following. This snippet is part of the document class and obtains an object specifier for the document
by name (rather than by index, which may become invalid if the document ordering changes):

Listing 6-2 Specifying the application as a container

NSScriptClassDescription *containerClassDesc = (NSScriptClassDescription *)
// 1[NSScriptClassDescription classDescriptionForClass:[NSApp class]];

return [[[NSNameSpecifier alloc]
initWithContainerClassDescription:containerClassDesc
containerSpecifier:nil key:@"orderedDocuments"

// 2name:[self lastComponentOfFileName]] autorelease];

Here’s a description of what this code snippet does:

1. The application is the container for a list of ordered documents, so this code first obtains a class
description from the global application object, NSApp. (You never pass nil for the class description.)

2. It then creates and returns an autoreleased object specifier of type NSNameSpecifier, passing
nil for the containerSpecifier parameter to specify the top-level container, the application.
(This is the only case in which you can pass nil for the container.)

It invokes the NSDocumentmethod lastComponentOfFileName to obtain the name of the document
and uses it to construct a name specifier object.

Implementing A Method for Evaluating Object Specifiers

Container classes that want to evaluate certain object specifiers on their own should implement the
indicesOfObjectsByEvaluatingObjectSpecifier:method defined byNSScriptObjectSpecifiers
(a category on NSObject). For example, you might choose to implement this method if you find that
whose clause evaluation is too slow and you want to do your own evaluation to speed it up (though
for most applications, performance of the default whose mechanism should be sufficient).

If this method returns nil, the object specifier method for the class does its own evaluation. If this
method returns an array, the object specifier uses the NSNumber objects in the array as the indices of
the specified objects.

Therefore, if you implement this method and when you evaluate the specifier there are no objects
that match, return an empty array, not nil. If you find only one object, you return its index in an
array. Returning an array with a single index where the index is –1 is interpreted to mean all the
objects match.

The Sketch application implements this method in its document class, as shown in Listing 6-3. This
allows Sketch to directly handle some range and relative specifiers for graphics, so it can support
script statements such as graphics from circle 3 to circle 5, circles from graphic 1 to
graphic 10, or circle before rectangle 3.

70 Implementing A Method for Evaluating Object Specifiers
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Listing 6-3 indicesOfObjectsByEvaluatingObjectSpecifier: method from Sketch

- (NSArray *)indicesOfObjectsByEvaluatingObjectSpecifier:(NSScriptObjectSpecifier
*)specifier {

// 1if ([specifier isKindOfClass:[NSRangeSpecifier class]]) {
return [self indicesOfObjectsByEvaluatingRangeSpecifier:(NSRangeSpecifier

*)specifier];
// 2} else if ([specifier isKindOfClass:[NSRelativeSpecifier class]]) {

return [self
indicesOfObjectsByEvaluatingRelativeSpecifier:(NSRelativeSpecifier *)specifier];

}
// 3return nil;

}

Here’s a description of how this method works:

1. If the passed specifier is a range specifier, it returns the result of invoking another Sketch method
to evaluate the specifier.

The method indicesOfObjectsByEvaluatingRangeSpecifier: allows more flexible range
specifiers to be used with the different graphic keys of a SKTDrawDocument.

You can examine this method in Sketch. Describing it in full is beyond the scope of this discussion.

2. If the passed specifier is a relative specifier, it returns the result of invoking another Sketch method
to evaluate the specifier.

The method indicesOfObjectsByEvaluatingRelativeSpecifier: allows more flexible relative
specifiers to be used.

Again, this method is available in Sketch, but is beyond the scope of this discussion.

3. For any other type of specifier, this method returns nil so that the default object specifier
evaluation will take place.

Implicitly Specified Subcontainers

Cocoa Scripting provides support for implicitly specified subcontainers. An implicitly specified
subcontainer is an object container that can be specified in an AppleScript script by context, rather
than by an explicit reference. Without this feature, a script would have to fully specify the path to a
word in, for example, a TextEdit document:

fourth word of text of front document

You can make life easier for scripters who use your application by saving them the trouble of writing
full references to objects in situations where part of the reference can be safely assumed. For example,
the following would be a simpler, but reasonable way to refer to the same word, since text is the
obvious container of words in a document:

fourth word of front document

That is, you can allow of text to be implicitly specified by context, instead of explicitly specified in
the script.

Implicitly Specified Subcontainers 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

To support an implicitly specified subcontainer, you add a contents element to the class element
for the containing class in your sdef file. The contents element indicates that a scripter can obtain
the contents of an object of this class type without specifying the container that holds the contents.

For example, suppose your application has a document class, MyTextDocument, that handles text with
an instance of the NSTextStorage class. NSTextStorage supports scriptability for words, paragraphs,
and the other text items listed in Table 3-2 (page 39).

Your application can turn the text storage instance into an implicitly specified subcontainer, so that
a user won't have to specify it in a script, but can specify just the document, as in the sample shown
above. To do so, you add a contents entry for the document class to support, as shown in Listing
6-4. This contents element specifies that for a script to access the text-related contents of a document
object, it can just specify the document object, without having to specify a container within the object.

The MyTextDocument class would implement accessors that match the Cocoa key defined in the sdef:
that is, contents and setContents:. For an idea of what these accessors might look like, see the
similarly named accessors for the text area class (SKTTextArea) in the Sketch application.

Listing 6-4 Class definition for text document, containing a contents element

<class name="document" code="docu"
description="A text document.">

<cocoa class="MyTextDocument"/>
<contents name="text contents" code="TeCo" type="rich text"

description="The text of the document.">
<cocoa key="contents"/>

</contents>
</class>

When you supply a contents entry, an appropriate NSPropertySpecifier will be inserted into the
object specifier containment chain when a reference using that container class would otherwise be
invalid.

Note: For applications that supply scriptability information through script suite and script terminology
files, implicit subcontainers are supported by a DefaultSubcontainerAttribute entry in the class
dictionary. The value of the entry must be the key of one of the entries in the Attributes or
ToOneRelationships dictionary of the class. For example, the TextEdit application’s
TextEdit.scriptSuite file includes an entry in its document dictionary to support implicitly specified
text storage. The following is an excerpt from that file:

{
[...]

"Classes" = {
[...]
"Document" = {

"Superclass" = "NSCoreSuite.NSDocument";
"AppleEventCode" = "docu";
"DefaultSubcontainerAttribute" = "textStorage";
"ToOneRelationships" = {

"textStorage" = {
"Type" = "NSTextStorage";
"AppleEventCode" = "ctxt";

};
};

};
}; }

72 Implicitly Specified Subcontainers
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 6

Object Specifiers

Cocoa scripting uses script command objects to handle scripting-related Apple events received by
your application. This chapter describes how script commands work, and how your application uses
them to support its scriptable features.

Script Commands Overview

When a user runs an AppleScript script, script statements that target your application are converted
into corresponding Apple events and sent to the application. For each Apple event that corresponds
to a command defined in your sdef, Cocoa scripting instantiates a script command object that contains
all the information needed to describe the specified operation. It then executes the script command,
which works with objects in your application to perform the operation. The flow of Apple events is
bidirectional and script commands can return values to the originating script.

Note: Cocoa's NSApplication class automatically registers handlers for certain Apple events, such
as open application and open documents. These handlers are described in “How Cocoa Applications
Handle Apple Events” (page 105).

Cocoa scripting provides default support for many basic AppleScript commands, such as delete,
move, get, and set. This support is implemented by the NSScriptCommand class and a number of
subclasses. In some cases, it also relies on command information that you must insert into your sdef
file. Beyond that, however, the default support generally requires only that your scriptable objects
follow the key-value coding guidelines described in “Maintain KVC Compliance” (page 56) and that
you implement object specifier methods for your scriptable classes, as described in “Object
Specifiers” (page 63).

You can define new subclasses of Cocoa's script command classes to modify their default behavior
or to implement new AppleScript commands specific to your application. Or, in some cases, you can
simply add a command-handling method to a scriptable class and provide information in your sdef
file to specify when it should be called. This chapter includes detailed information on how to perform
these kinds of operations.

Script Commands Overview 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Script Command Classes Supplied by Cocoa

Cocoa defines Objective-C script command classes to implement the AppleScript commands from
the Standard suite. These classes are listed in Table 9-4 (page 103). As part of Cocoa scripting's standard
implementation, NSScriptCommand and its subclasses can handle the close, copy, count, create,
delete, exists, move, open, and printcommands for most applications without any subclassing. It
also handles the get and set commands, which are technically not part of the Standard suite, but
rather considered built-in, or intrinsic, AppleScript commands. However, if your application needs
to modify any of these commands, you can do so in one of two ways:

 ■ Supply a method to handle the command and list it in your sdef file.

 ■ Create a subclass of NSScriptCommand or one of its subclasses and override
performDefaultImplementation.

Table 7-1 (page 88) lists the AppleScript commands supported by Cocoa scripting and summarizes
their default behavior and how you can customize it.

Important: When your application defines a new Objective-C script command class, it must be a
subclass of NSScriptCommand or of one of its subclasses.

Script Command Scriptability Information

In working with script commands, Cocoa scripting relies on scriptability information in your sdef.
That includes command elements, which provide information about specific AppleScript commands,
and responds-to elements, which specify that objects of a particular class can respond to a specified
command.

Your sdef includes a command element for every new AppleScript command you create. For these
commands, you specify all the appropriate information described in “Command Elements” (page
50). That includes command name, code, and description. It can also include a direct parameter, other
parameters, and result type.

Note: When a command object is instantiated, parameters and result type are stored in an argument
dictionary in the command. See “Script Command Components” for information on how to access
items in the argument dictionary.

If you implement a new Objective-C class for the command, you also supply the name in the command
element. If you do not supply a class name, Cocoa scripting uses the default, NSScriptCommand.

Your sdef should also include command element definitions for most of the AppleScript commands
Cocoa scripting supports, if they can be used in your application:

 ■ Your sdef should not include command elements for the get and set commands—they are
automatically available to every application.

 ■ Your sdef should include command elements for the commands in the Standard suite, such as
count, duplicate, and move. You can obtain these definitions by copying them from the file
Sketch.sdef, as described in “Create a Scripting Definition File” (page 45).

74 Script Commands Overview
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Cocoa also provides automatic support for the AppleScript types described in “Built-in Support for
Basic AppleScript Types” (page 20).

Script Command Components

A script command object is an instance of NSScriptCommand or one of its subclasses, including classes
defined by Cocoa and those defined by your application. A script command can have several
components, which vary by command and are described in the command element definition for the
command in the sdef file.

 ■ The receiver or receivers for the command (if any): The object or objects designated to receive
the command in the application.

If the originating Apple event specifies receivers, it does so in its direct parameter. If the Apple
event does not specify receivers, it may still have a direct parameter, which is then interpreted
to be the object to which to send the command.

If a command specifies receivers, you can retrieve them from the command object with the
evaluatedReceivers method, which converts object specifiers into references to actual objects.
If the command doesn't specify receivers, you can retrieve the direct parameter with the
directParameter method, or you can retrieve it from the arguments list, as described in the next
item.

 ■ The arguments of the command (if any): The arguments provide access to information from the
parameters of the originating Apple event. The arguments can include direct parameter, other
parameters, and result type.

You can retrieve a dictionary of arguments from the command object with the
evaluatedArguments method. You obtain individual arguments from this dictionary by key,
where the parameter names defined in the sdef serve as keys. You can use the empty key (an
empty string: @"") to retrieve the direct parameter (or "unnamed argument") from the argument
dictionary, if the direct parameter is not the receivers specifier.

 ■ The class description for the command: From the class description, you can obtain information
such as argument names, command result type, AppleScript command name, and name of the
Objective-C class Cocoa instantiates to perform the command. This information is used by Cocoa
scripting, but less commonly by your application. See “Script Command Creation” (page 75) for
a description of how Cocoa scripting obtains this information.

 ■ An Apple event descriptor: This Cocoa object, of type NSAppleEventDescriptor, represents the
Apple event itself. Your application won't necessarily need to work directly with the Apple event,
but it's available if you do.

Your application typically only needs to access the components of a command when you want to
modify the default behavior or implement a new script command. In those situations, the
NSScriptCommand class provides a number of methods for obtaining the information you need,
including those mentioned here (evaluatedReceivers,evaluatedArguments, anddirectParameter).

Script Command Creation

It is important to note that your application doesn't typically instantiate a script command directly.
Instead, it lists the commands it can handle in its sdef file and Cocoa scripting instantiates a command
object when the application receives the corresponding Apple event.

Script Commands Overview 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Cocoa extracts information from the Apple event and stores it in the command object. To do this, it
uses application scriptability information (loaded from your sdef and stored in a global instance of
NSScriptSuiteRegistry) to obtain the keys for the specified objects and to get data from class and
command descriptions. Application scriptability information automatically includes information to
support the get and set commands.

Because at this point the command’s receivers and arguments are probably known only as AppleScript
reference forms (for example, graphic 3 of document "SketchDocOne"), they are represented in
the command object as nested object specifiers. See “Script Commands and Object Specifiers” (page
76) for more information.

Script Command Execution

Once Cocoa scripting has created and prepared a script command, it executes it in a series of steps:

1. It uses key-value coding (KVC) to evaluate the receivers specifier in the script command (see
“Script Commands and Object Specifiers” (page 76) for details).

2. It determines which method to use for executing the command. For some commands (such as
get and set), it invokes KVC methods, based on keys supplied in the sdef file, to access values
of the specified objects.

For other commands, it looks in the class descriptions of the receivers to see if any has specified
a selector for the command. If not, or if there are no receivers, it selects the default implementation
for the command. This mechanism is described in more detail in “Object-first Versus Verb-first
Script Commands” (page 78).

3. It invokes the method indicated by the selector (which has a single argument, the script command
object) or the method that implements the default behavior for the command
(performDefaultImplementation).

4. When a command needs to return a value, Cocoa scripting packages the information in a reply
Apple event and returns it. If an error occurs while executing the command, Cocoa returns the
error information (including any information added by the application) in the reply Apple event.
For details, see “Error Handling” (page 77).

5. If a command requires asynchronous processing, the application can suspend it, so that the
application doesn't receive additional Apple events during processing. For details, see “Suspending
and Resuming Apple Events and Script Commands” (page 113).

Most standard commands perform their operations automatically. For an example where you might
want to modify or replace the default behavior, see “Modifying a Standard Command” (page 86).

Script Commands and Object Specifiers

When a script command is ready for execution in your application, the receiver or receivers have
been set as object specifiers and any arguments may also have been set as object specifiers (arguments
can be actual values as well). To represent a series of reference forms (such as first word of second

76 Script Commands Overview
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

paragraph of document "Stock Alert"), each object specifier is nested inside its container object
specifier; the innermost object specifier indicates the final object to be evaluated, while the outermost
object is usually the application.

The keys to an attribute or relationship are often not the same words expressed by the corresponding
reference forms. For example, the key for an array of document objects is orderedDocuments, but the
actual scripting term used is document. The mapping between key name and script name is provided
in the application's sdef. When Cocoa scripting converts an Apple event into an objective-C script
command object, it obtains the mapping between a four-character code in the Apple event and the
corresponding key for the specified class, attribute, or relationship in the application. It can then locate
the language-independent information (specifically, class and command descriptions) needed to
compose the script command, including the object specifiers for its arguments and receivers.

In the normal course of script-command execution, an application invokes evaluatedReceivers on
a script command to get the receiver or receivers of the command and invokes evaluatedArguments
to get any arguments of the command. These methods in turn invoke objectsByEvaluatingSpecifier
on the object specifiers representing command arguments or receivers. The object specifier receiving
the message is the innermost specifier as nested in its containers.

The objectsByEvaluatingSpecifier method goes up the chain of nested containers by asking each
specifier for its container until it comes to the top-level object specifier, which has no container. The
top-level object is usually the application object, but it can be an object specifier involved in a whose
clause (NSWhoseSpecifier) or the container for a range evaluation. The method then invokes
objectsByEvaluatingWithContainers: on this top-level specifier, which then proceeds down the
chain of nested specifiers, evaluating each through key-value coding and using the evaluated object
as the basis for the next evaluation. Evaluating the innermost specifier yields the real command
receiver or receivers or any object used as a command argument.

For related information, see “A Closer Look at an Object Specifier” (page 65).

Error Handling

Your application can signal error information during script command execution by providing the
command object with an error number, an error string, or both. The error information is returned in
the reply Apple event. If an error occurs and your application does nothing, Cocoa scripting will
supply the most applicable error number it can, along with an error string for that number. The error
codes that Cocoa scripting uses for general command execution problems are listed with the
documentation for the NSScriptCommand class.

NSScriptCommand supplies the setScriptErrorNumber: and setScriptErrorString:methods for
setting error information.

Your command handler should only provide error information if it is specific to the operation of your
application. On occasion, you may be able to use one of the codes defined by Cocoa scripting. You
can also choose an error number from constants supplied by the Apple Event Manager (described in
“Apple Event Manager Result Codes” in Apple Event Manager Reference). When you choose one of
these constants, such as errAENotASingleObject, Cocoa scripting will supply the corresponding
error string ("Handler only handles single objects"). You can also supply general Mac OS
system error numbers (defined in MacErrors.h). For example, if you return fnfErr, the error number
for "file not found", AppleScript will attempt to supply an appropriate error string.

Script Commands Overview 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Object-first Versus Verb-first Script Commands

Cocoa script commands can be described as object-first or verb-first, depending on the receivers for
the command. When a script command is executed, it looks first for receivers that can perform the
desired action directly. If it finds any, it invokes the specified method on each receiver. A command
of this type is called an object-first command—the objects perform the specified action on themselves.

Sketch implements the rotate command as an object-first command—for details, see “Implementing
an Object-First Command—Rotate” (page 81).

If no receiver can perform the desired action, or if there are no receivers specified, the script command
invokes its performDefaultImplementation method. When a command invokes this method, it is
called a verb-first command—a single method performs the action (or verb) on any number of objects.
To create a verb-first command, you define a subclass of one of Cocoa's script command classes and
override the performDefaultImplementation method (which does nothing in NSScriptCommand)
to perform your version of the command action.

Sketch implements the align command as a verb-first command—for details, see “Implementing a
Verb-First Command—Align” (page 84). Several of the standard commands are also verb-first
commands—see Table 9-4 (page 103) for details.

Figure 7-1 shows Cocoa scripting's decision tree for executing a script command.

Figure 7-1 Executing a script command—verb-first versus object-first

Invoke method
for each receiver

(Object-first command)

Invoke the commandʼs
performDefaultImplementation:

method
(Verb-first command)

Does the
command have
any receivers?

Does any
receiver specify

a method?

Yes

No

Yes

No

78 Script Commands Overview
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

About Object-first Script Commands

You can use an object-first command to modify the behavior of a standard AppleScript command
(except for the get and set commands). You can also use an object-first command to quickly add a
new AppleScript command to your application. For these tasks, you don't need to implement a new
Objective-C command class. However, you can implement such a class if desired—for example, if
you want to supply functionality in the command class that any of the receivers can invoke.

An object-first command is appropriate for an action that can benefit from polymorphism, because
the same message can result in different behavior depending on the receiver. It is also appropriate
for operations on relatively small numbers of objects or for simple actions that don't require peripheral
information—for example, an action that calls for a simple reversal of state. Although each receiver
can, if necessary, extract information from the command to aid in performing the action, such an
approach could conceivably lead to performance problems, if operating on large numbers of objects.

Another advantage of using an object-first command is that you can often implement it by creating
a category on an existing class.

To support an object-first command, you perform the following steps:

 ■ In your sdef, provide a responds-to entry for each scriptable class that can handle the command.
Specify the same method name for each class, matching the template <methodName>:.

 ■ For a new AppleScript command you have defined, add a command element to your sdef file.
Specify all the appropriate information described in “Command Elements” (page 50).

If you will define a new Objective-C class to implement the command, supply the class name in
the command element.

 ■ To use the object-first approach to change the behavior of a standard AppleScript command (but
not the get and set commands), make sure your sdef includes the command element definition
for that command, as described in “Create a Scripting Definition File” (page 45). You don't need
to modify the command definition unless you implement a new Objective-C class for the command.

For example, if your sdef includes a responds-to element that specifies a specialMove: method
that Cocoa scripting should invoke for the move command, there is no need to modify the move
command in your sdef or to subclass NSMoveCommand. But if you do provide a subclass of
NSMoveCommand, you must list it in the command element.

 ■ In the implementation for the corresponding scriptable classes, implement the named method.
The method declaration must match one of the following two templates (depending on whether
the command returns a value):

-(id)<methodName>:(NSScriptCommand*)command

-(void)<methodName>:(NSScriptCommand*)command

 ■ If you are using one, implement the Objective-C class for the command; it must inherit from one
of the script command classes defined by Cocoa.

For a detailed example, see “Implementing an Object-First Command—Rotate” (page 81).

Script Commands Overview 79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

About Verb-first Script Commands

A verb-first command is appropriate for an action that requires the interaction of objects, so that it
cannot be handled by individual objects. It is also appropriate for operations that require significant
overhead, such that it would be inefficient to invoke the same method on many objects, with each
duplicating the overhead. A verb-first command can also be appropriate to customize the behavior
of an existing verb-first command.

To implement a verb-first command, you perform the following steps:

 ■ To handle a new AppleScript command for your application, add a command element for the class
to your sdef file. Specify all the appropriate information described in “Command Elements” (page
50). That includes specifying the name of your new Objective-C class that implements the
command.

To handle a standard AppleScript command with a new command subclass, make sure your sdef
includes the command element definition for that command (except for the get and set commands),
as described in “Create a Scripting Definition File” (page 45). Modify that element to specify the
name of your new Objective-C class.

 ■ Define the command in your code as a subclass of NSScriptCommand or of one of the script
command subclasses listed in Table 9-4 (page 103):

Subclass NSScriptCommand to perform an operation which is not supported by any of the standard
Cocoa script command classes.

Subclass one of Cocoa scripting's other script command classes to perform a variation of its
standard action. For example, you may want to perform a custom move operation in some cases,
but otherwise fall back on the default behavior.

 ■ Override the performDefaultImplementation method. In that method, you can use methods
of NSScriptCommand to extract any information you need from the command object.

For example, you can examine the objects on which the command should be performed and
decide whether to perform the customized version of the command. If not, you can invoke the
method of the superclass:

return [super performDefaultImplementation];

This method either returns an id or, if there is nothing to return, returns nil. The version in
NSScriptCommand does nothing and returns nil, but most subclasses of NSScriptCommand
override this method to perform an action.

For a detailed example, see “Implementing a Verb-First Command—Align” (page 84).

Mixing Object-first and Verb-first Behavior

When implementing a new command class or overriding a Cocoa command class, you might choose
to mix the verb-first and object-first approaches. For example, you might support a command that
most objects in your application can handle in a specified method (object-first), but that for a certain
class of objects, it is necessary to handle the action in the performDefaultImplementation method
(verb-first).

To implement a command that mixes these behaviors, you use a combination of the same
implementation steps described in “About Object-first Script Commands” (page 79) and “About
Verb-first Script Commands” (page 80). That is, you provide both responds-to elements and a

80 Script Commands Overview
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

command element in your sdef file and you specify an Objective-C class for the command; in your
code, you implement a script command subclass that overrides performDefaultImplementation,
as well as versions of the method specified by the responds-to element in individual classes that
can respond to the command. The result of handling an instance of the command will then depend
on the class types of the objects on which it operates.

Important: Cocoa scripting cannot mix verb-first and object-first approaches in response to a single
Apple event. It does the right thing if all the objects specified by an Apple event provide a method
with the same signature to handle the action (object first—invoke the method) or if none of them do
(verb-first—invoke the command's performDefaultImplementation method). However, if a single
Apple event includes some objects that specify a method and some that don't, or objects that specify
methods with different names, the result is undefined.

Steps for Implementing a New or Modified Script Command

To summarize from previous sections, you use these steps to implement a new command or to modify
the behavior of the script commands provided by Cocoa scripting:

 ■ For either an object-first (except the get and set commands) or a verb-first command:

In the sdef, define a command element for the AppleScript command, if it doesn't already have
one.

 ■ For an object-first command:

 ❏ In the sdef, add a responds-to element to the class definition of each scriptable class that
can handle the command. Specify the same method name for each class.

 ❏ Implement the specified method in the classes that can respond to the command. The
declaration should match one of these templates:

-(id)<methodName>:(NSScriptCommand*)command

-(void)<methodName>:(NSScriptCommand*)command

 ■ For a verb-first command (and if needed, for an object-first command)

 ❏ Implement an Objective-C script command class that inherits from NSScriptCommand or one
of its subclasses.

 ❏ Specify the name of the Objective-C command class in the command element in the sdef.

For a verb-first command, override the performDefaultImplementation method.

Implementing an Object-First Command—Rotate

The Sketch sample application implements the rotate command as an object-first command—it's a
logical task for a rectangle object to rotate itself.

To implement the object-first AppleScript command rotate, the Sketch application does the following:

Implementing an Object-First Command—Rotate 81
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

1. It defines the rotate command in the file Sketch.sdef:

<command name="rotate" code="sktcrota"
description="Rotate objects.">
<direct-parameter type="graphic"/>
<parameter name="by" code="by " type="real"

description="degrees to rotate; positive numbers rotate
counter-clockwise.">

<cocoa key="byDegrees"/>
</parameter>

Here's what this command definition specifies:

a. The command name is "rotate" and its two-part code is "sktcrota". This code is used in
installing a handler to respond to Apple events that specify this command.

b. The command has a direct parameter which specifies one or more graphic objects to be rotated.

c. The command has a parameter with the key "byDegrees" that specifies the degrees by which
the specified objects should be rotated.

d. This command definition does not specify a command class to implement the command,
because the rotate command does not require a new command class. Because it doesn't
specify a command class, the default class will be used (NSScriptCommand).

e. This command definition does not include a result type element, so the Objective-C method
that handles the command should return nil.

2. In its sdef, Sketch also adds a responds-to element to the rectangle class (rectangles are the
only graphics that can be rotated by this command).

<responds-to name="rotate">
<cocoa method="rotate:"/>

</responds-to>

This element definition specifies that for a rotate command, Cocoa scripting should call the
rotate: method of the rectangle object to be rotated.

3. In the implementation for the SKTRectangle class, it implements the rotate: method. Here is a
summary of how rotate: works:

a. It invokes [command evaluatedArguments] on the passed command object to get a dictionary
(theArgs) containing the evaluated arguments for the command. The arguments have been
evaluated from object specifiers to objects if necessary. The keys in the dictionary are the
argument names, specified in the sdef.

b. It invokes [theArgs objectForKey:@"byDegrees"] to obtain the argument for the number
of degrees to rotate, as an instance of NSNumber. The key "byDegrees" corresponds to the
Cocoa key defined for the "by" parameter in the rotate definition in Sketch's sdef file.

c. It obtains the number of degrees to rotate by from the number object and performs some
math operations to determine whether to rotate the rectangle.

d. In the case that it needs to rotate the rectangle, it does so by flipping the width and height
and modifying the position.

82 Implementing an Object-First Command—Rotate
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

e. If there is an error, it invokes [self setScriptErrorNumber:theError] to supply an error
number.

You can also invoke setScriptErrorString: to supply an error message.

f. Because the rotate command does not declare a result type element in its sdef definition,
this method should return nil.

Note: To support various AppleScript commands, scriptable Sketch classes such as SKTGraphics and
SKTDrawDocument maintain KVC compliance in naming the accessors for their scriptable properties.
In addition, SKTGraphics implements an object specifier method (shown in Listing 6-1 (page 69), as
does NSDocument (the superclass of SKTDrawDocument).

Here is an AppleScript script that exercises the rotate command:

Listing 7-1 A script to test the rotate command

tell application "Sketch"
with timeout of 60 * 60 seconds

tell document 1
get orientation of every rectangle
set x to every rectangle
repeat with y in x

rotate y by 90
end repeat
try

rotate rectangle 1 by 80
on error eMsg number eNum

log {eNum, eMsg}
end try
get orientation of every rectangle

end tell
end timeout

end tell

Here's what this script does:

1. It sets a long timeout value so it won't time out (and be interrupted) during execution if you break
in the application to debug its scriptability support.

2. It performs a series of tests on the first document:

a. It gets the orientation property of every rectangle object.

b. It rotates every rectangle object by 90 degrees.

c. It uses a try block to test for an error condition (rotating by a value that is not a multiple of
90).

d. It gets the orientation property of every rectangle object after rotating.

You might add additional tests to this script, such as the following:

Implementing an Object-First Command—Rotate 83
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

1. Try to rotate by different degrees.

2. Try to rotate objects that aren't rectangles.

3. Delete all graphics, then try to rotate with no rectangles in the document.

4. Rotate each rectangle by flipping its orientation property.

Implementing a Verb-First Command—Align

The Sketch sample application implements the align script command as a verb-first command. It
makes sense to let the performDefaultImplementation method align all the specified objects in an
array of objects, whereas asking each object to align itself would require the objects to know or find
out about other objects to align with.

To implement the verb-first AppleScript command align, the Sketch application does the following:

1. It defines the align command in Sketch's sdef file

<command name="align" code="sktcalig"
description="Align a set of objects.">
<cocoa class="SKTAlignCommand"/>
<direct-parameter>

<type type="graphic" list="yes"/>
</direct-parameter>
<parameter name="to" code="to " type="edge">

<cocoa key="toEdge"/>
</parameter>

</command>

Here's what this command definition specifies:

a. The command name is "align" and its two-part code is "sktcalig". This code is used in
installing a handler to respond to Apple events that specify this command.

b. To handle the command, Cocoa scripting should implement an instance of SKTAlignCommand.

c. The command has a direct parameter which supplies a list of graphics to be aligned.

d. The command has a parameter that specifies the edge to which the objects should be aligned.

e. This command definition does not include a result type element, so the Objective-C code
that handles the command should return nil.

In its sdef, Sketch also defines an edge enumeration (not shown) to define edge constants for use
with the align command.

2. Sketch adds two files to its Xcode project to define the SKTAlignCommand class: SKTAlignCommand.h
and SKTAlignCommand.m.

This command is a subclass of NSScriptCommand, containing one method,
performDefaultImplementation. That method overrides the version in NSScriptCommand.

84 Implementing a Verb-First Command—Align
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

3. Here is a summary of how performDefaultImplementation works for the align command:

a. It determines the receivers for the command (an array of graphic objects to align).

b. It invokes [self evaluatedArguments] to get a dictionary (theArgs) containing the evaluated
arguments for the command. The arguments have been evaluated from object specifiers to
objects if necessary. The keys in the dictionary are the argument names, specified in the sdef.

c. It invokes [theArgs objectForKey:@"toEdge"] to obtain the argument for the edge to align
to. The key "toEdge" corresponds to the Cocoa key defined for the "to" edge parameter in
the align definition in Sketch's sdef file.

From that argument, it obtains the value of the edge to align to.

d. It gets the bounds for the first object in the array of graphics objects. That is the object to which
any other objects will be aligned.

e. It iterates over the array of graphics objects to align, using a mechanism to align them that
depends on the specified edge to align to.

f. If there is an error, it invokes [self setScriptErrorNumber:theError] to supply an error
number.

You can also invoke setScriptErrorString: to supply an error message.

g. Because the align command does not declare a result type element in its sdef definition,
this method should return nil.

TheperformDefaultImplementationmethod forSKTAlignCommandnever invokes the implementation
of its superclass (NSScriptCommand) for two reasons:

 ■ The version in NSScriptCommand doesn't do anything—it exists only to be overridden.

 ■ The implementation in SKTAlignCommand does all the work necessary to implement the align
command.

Here is an AppleScript script that exercises the align command:

Listing 7-2 A script to test the align command

tell application "Sketch"
with timeout of 60 * 60 seconds

tell document 1
align every graphic to vertical centers
delay 3
set x to every graphic
align x to horizontal centers

end tell
end timeout

end tell

Here's what this script does:

1. It sets a long timeout value so it won't time out (and be interrupted) during execution if you break
in the application to debug its scriptability support.

Implementing a Verb-First Command—Align 85
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

2. It tells the first document to align every graphic vertically.

3. After a 3 second delay, it tells the document to align every graphic horizontally.

You can make this test script more complete by, for example, adding statements to:

1. Test the other alignment options defined in Sketch's sdef: left edges, right edges, horizontal
centers, top edges, and bottom edges.

2. Align a range of graphics.

3. Delete all graphics, then try to align with no graphics in the document.

Modifying a Standard Command

The NSMoveCommand is part of Cocoa’s built-in scripting support for standard AppleScript commands.
It works automatically to support the move command through key-value coding. However, there are
situations where you might want to override this command, using either a verb-first or an object-first
approach. This section provides some tips for this task—a complete solution is beyond the scope of
this document.

Here is the sdef entry for the move command, which shows the direct parameter and other parameters
to the command:

<command name="move" code="coremove"
description="Move object(s) to a new location.">

<cocoa class="NSMoveCommand"/>
<direct-parameter type="specifier" description="the object(s) to

move"/>
<parameter name="to" code="insh" type="location specifier"

description="The new location for the object(s).">
<cocoa key="ToLocation"/>

</parameter>

Important: The NSMoveCommand class overrides the setReceiversSpecifier: method of
NSScriptCommand, so that the container, rather than the objects to be moved, becomes the receiver
for the command. So the specifier returned by receiversSpecifiermay be different than the specifier
set by setReceiversSpecifier:. For more information, see the documentation for NSMoveCommand.

Other command classes that override setReceiversSpecifier: are: NSCloneCommand,
NSDeleteCommand, and NSSetCommand.

A Verb-first Move Command

Suppose your application lets scripters work with terms such as file and folder, providing a familiar
terminology to access data that is actually stored in a database. However, your underlying
implementation does not support operations on this data using KVC accessors whose keys can be
mapped to "file" and "folder". Or perhaps you tried the standard move support and found that
you need increased performance for moving large numbers of objects.

86 Modifying a Standard Command
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Using the verb-first approach, you can subclass NSMoveCommand and override
performDefaultImplementation. The NSMoveCommand class is already a verb-first command, and it
generally makes sense to have a higher-level object within your application supervise the movement
of contained objects, rather than telling each object to move itself.

In your override of performDefaultImplementation, you can extract information from the command
and translate it into appropriate operations on the underlying data. For example, you can examine
the objects to move:

 ■ If they are file or folder objects, you make the appropriate changes in the database to reflect
the changes expected in the user's (AppleScript object model) view of the world.

 ■ For other objects, you can use the following statement to apply the standard behavior supplied
by NSMoveCommand:

return [super performDefaultImplementation];

An Object-first Move Command

Suppose, on the other hand, that certain objects in your application do know how to move themselves,
and they use a mechanism different from the KVC-based moves supported by NSMoveCommand, which
work with standard containers. In this situation, you could use the object-first mechanism to allow
objects of a certain class to handle the move command directly in a method defined for that class.

To implement this approach, you use the steps described previously in “About Object-first Script
Commands” (page 79). In your handler methods, you extract the information you need from the
command object (the location to move to), which is passed as a parameter to the method, then perform
the move for the current object.

Summary of AppleScript Command Support

Table 7-1 lists AppleScript commands supported by Cocoa scripting. For each command, it shows
the Objective-C class that executes the command. It also describes the default handling for the command
and how to customize it.

Though not mentioned in the table, for classes that recommend verb-first modification, you can
generally use the object-first approach as well. This is particularly useful if you want to modify
behavior on a class-by-class basis.

Remember too that most Cocoa script commands rely on you to maintain KVC-compliance in the
naming of scriptable properties in your scriptable classes, and in some cases to implement object
specifier methods for those classes. Otherwise, the commands cannot identify objects in your
application on which to operate, or get or set values in those objects.

For additional information on default handling, see “Apple Events Sent by the Mac OS” (page 106).

Summary of AppleScript Command Support 87
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Table 7-1 Default support for AppleScript commands and how to customize it

Default support and how to customize itObjective-C classAppleScript
command

Cocoa scripting automatically handles close for windows and
documents, with the window version commonly passing control
to the window's document. Customize by overriding the
handleCloseScriptCommand:method in a subclass ofNSDocument
or NSWindow, depending on the object. (See also the documentation
for NSWindowScripting.)

To support close for a different class, you can use the mechanism
described in “About Object-first Script Commands” (page 79).

NSCloseCommandclose

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

NSCountCommandcount

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

NSDeleteCommanddelete

Handled by a verb-first command that invokes copyWithZone:
on the objects to be duplicated. Customize in your implementation
of that method or by implementing a verb-first subclass, as
described in “About Verb-first Script Commands” (page 80).

NSCloneCommandduplicate

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

NSExistsCommandexists

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

You do not need a command element in your sdef file for the get
command.

NSGetCommandget

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

NSCreateCommandmake

Handled by verb-first command. Customize by implementing
either a verb-first or object-first approach, as described in
“Modifying a Standard Command” (page 86).

NSMoveCommandmove

Cocoa automatically handles open documents by invoking the
methods described in “Open” (page 108). You can modify the
default behavior by implementing or overriding those methods.

NSScriptCommandopen
documents

Cocoa automatically handles print for documents by invoking
the methods described in “Print” (page 109). You can modify the
default behavior by implementing or overriding those methods.

NSScriptCommandprint
documents

88 Summary of AppleScript Command Support
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

Default support and how to customize itObjective-C classAppleScript
command

The NSApplication class automatically handles this command
for applications by invoking the methods described in
“Quit” (page 110). You can modify the default behavior by
implementing or overriding those methods.

NSQuitCommandquit

Cocoa automatically handles save for windows and documents,
with the window version commonly passing control to the
window's document. Customize saving behavior by overriding
the handleSaveScriptCommand: method in a subclass of
NSDocument or NSWindow, depending on the object. (See also the
documentation for NSWindowScripting.)

To support save for a different class, you can use the mechanism
described in “About Object-first Script Commands” (page 79).

NSScriptCommandsave

Handled by verb-first command. Customize by implementing a
verb-first subclass, as described in “About Verb-first Script
Commands” (page 80).

You do not need a command element in your sdef file for the set
command.

NSSetCommandset

Summary of AppleScript Command Support 89
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

90 Summary of AppleScript Command Support
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 7

Script Commands

This chapter lists tactics you can use to test and debug your scriptable Cocoa application. It also
provides a brief list of possible performance issues, including links to performance information
elsewhere in this document.

Scriptability Test Plan

As noted in “Designing for Scriptability” (page 29), planning for testing should be an integral part
of your application design and implementation. Your test plan should include regular milestones to
confirm each step of scriptability. These can include:

1. Validating your terminology (verifying that your sdef is semantically correct).

2. Verifying that the application is receiving Apple events.

3. Verifying that your script commands get instantiated and executed when the corresponding
Apple events are received.

4. Verifying that the expected methods are called to get and set scriptable values.

5. Verifying that support for more complex script statements you support, such as every and whose
statements, is working. (For examples of these types of statements, see the object specifiers for
the filter (whose) and every reference forms in Table 6-1 (page 67).)

Your test plan should also include performance testing. For more information, see “Performance
Issues for Scriptability” (page 97).

Use AppleScript Scripts to Test Your Application

As you implement your application, you should build up a suite of test scripts to exercise its
scriptability. And the more features you make scriptable, the more your script testing can serve as a
testbed for your entire application.

Scriptability Test Plan 91
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

From Script Editor, you can cut and paste the Event Log output from your test scripts and save it for
later regression testing. As you make changes to your application, whether in script-specific code or
not, you can compare the current output to the saved version to help you find possible side-effects.

Make your test scripts as complete as possible by following these guidelines:

 ■ Exercise the entire hierarchy of your AppleScript object model: for example, have your scripts
get and set every accessible property of every accessible object, using repeat loops and every
statements.

After getting and setting values, use a log statement to log the propertiesproperty of the objects
to record the changes.

 ■ Test access by every applicable reference form: for example, iterate over scriptable collections by
name, by ID, by index, and by any other form that applies. (See Table 6-1 (page 67) for a list of
reference forms.)

 ■ Test creating new objects by using the make command and specifying properties.

For example, this script tests Sketch by creating a new graphic object in an existing document:

Listing 8-1 Simple test script

tell application "Sketch"
tell document "Test Doc.sketch"

make new circle at end with properties {x position:50, y position:30,
width:60, height:60}

end tell
end tell

 ■ Test using whose clauses: they're a powerful scripting feature that is important to users.

A whose clause can provide a good stress test for your scriptability, and may turn up performance
issues.

 ■ Run scripts that make changes then reverse them, then check whether the end result matches the
starting point.

 ■ Run your test scripts regularly, even after code changes that you don't expect to affect your
application's scriptability.

For additional information on using test scripts, including examples, see “Implementing a Verb-First
Command—Align” (page 84) and “Implementing an Object-First Command—Rotate” (page 81).

Turn On Debugging Output for Scripting

Turning on Cocoa’s debugging output for scripting will help you debug your scriptable application.
Debugging output shows information such as

 ■ loaded scriptability information (from an sdef file or from script suite and script terminology
files)

 ■ executed script commands

 ■ the arguments to executed commands

92 Turn On Debugging Output for Scripting
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

To turn on this support, you set a debugging value in the user defaults system provided by Mac OS
X. Default values in the global domain are accessible to any application. For example, during
development, an application can set a user default value that a debugger checks to determine whether
to display certain debug information. That’s the approach that Cocoa takes to log debug information
for scripting.

Note: You can read more about Cocoa’s support for the defaults system in the document User Defaults
Programming Topics for Cocoa.

Steps for Turning On Cocoa Debugging Output

To turn on Cocoa’s debugging output for scripting, you do the following:

1. Open a Terminal window. Terminal is available in /Applications/Utilities.

2. Enter the following line and press Return to execute it:

defaults write NSGlobalDomain NSScriptingDebugLogLevel 1

You can turn off debugging output with a line like this:

defaults write NSGlobalDomain NSScriptingDebugLogLevel 0

You can display all the current values in the global domain with a line like this:

defaults read NSGlobalDomain

3. If your application is already running, quit the application.

4. If you launch your application from the Finder, look for debug information in the Console
application (available in /Applications/Utilities). If you launch your application in Xcode,
look for debug information in the Debug Console pane or in the Run pane.

You will not see any debugging information until the application receives an Apple event that causes
it to execute a script command (and in turn, to load the application’s scriptability information). You
can view debugging information for either a development or a deployment build of your application.

If you only want to turn on script debugging for a particular application, you can use the application
domain. The application domain is identified by the bundle identifier of the application, typically a
string in the form of a Java-style package name (think of it as a reverse URL). For example, you could
turn on script debug logging for the Sketch sample application (available from Apple) by executing
the following line:

defaults write com.apple.CocoaExamples.Sketch NSScriptingDebugLogLevel 1

To read this value or to reset it to zero, use one of the following two lines:

defaults read com.apple.CocoaExamples.Sketch NSScriptingDebugLogLevel
defaults write com.apple.CocoaExamples.Sketch NSScriptingDebugLogLevel 0

Turn On Debugging Output for Scripting 93
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

Sample Output

The following listing shows a script that changes the height of a circle in a Sketch application window.

tell application "Sketch"
tell the first document

set height of first circle to 100
end tell

end tell

Listing 8-2 shows the debug output from running the script shown above on a version of Sketch that
supplies its scriptability information with an sdef file. The output shows the command listed as
Command: Intrinsics.set, because Cocoa scripting automatically supplies information for various
"intrinsic" AppleScript terminology.

The debug information includes the direct parameter (the property to set, height), the receivers for
the command (a specifier for circles 1 of orderedDocuments 1), and the arguments for the
command (the value to set, 100). You can also see that Sketch returns a result of null, because no
return value is needed for a set command.

Listing 8-2 Debug scripting output for sdef-based Sketch

2006-02-24 13:51:29.951 Sketch[8245] Command: Intrinsics.set
Direct Parameter: <NSPropertySpecifier: height>
Receivers: <NSIndexSpecifier: circles 1 of orderedDocuments 1>
Arguments: {Value = <NSAppleEventDescriptor: 100

2006-02-24 13:51:29.953 Sketch[8245] Result: (null)

Listing 8-2 shows output from running the same script on a version of the Sketch application that
supplies its scriptability information in the script suite format. There are two main differences from
the previous listing:

 ■ First, the output shows the Standard suite (formerly called the Core suite), Text suite, and Sketch
suites—you will see this information the first time the application loads those suites in response
to receiving an Apple event.

 ■ Second, the command is listed as Command: NSCoreSuite.Set, reflecting the suite format for
providing intrinsic scriptability information.

Listing 8-3 Debug scripting output for script suite-based Sketch

2005-05-20 13:38:39.736 Sketch[2005-05-20 13:40:55.215 Sketch[516] Suite NSCoreSuite,
apple event code 0x3f3f3f3f
2005-05-20 13:40:55.223 Sketch[516] Suite NSTextSuite, apple event code 0x3f3f3f3f
2005-05-20 13:40:55.253 Sketch[516] Suite Sketch, apple event code 0x736b7463
2005-05-20 13:40:55.259 Sketch[516] Command: NSCoreSuite.Set

Direct Parameter: <NSPropertySpecifier: height>
Receivers: <NSIndexSpecifier: circles 1 of orderedDocuments 1>
Arguments: {Value = 100; }
Key Specifier: <NSPropertySpecifier: height>

2005-05-20 13:40:55.261 Sketch[516] Result: (null)

94 Turn On Debugging Output for Scripting
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

Debugging Scriptability Information

To view an sdef file in a dictionary viewer, double-click it in the Finder. Double-clicking an sdef file
in an Xcode project similarly opens it in a dictionary viewer window. To view or edit the XML for
the file, open the sdef file with any plain text editor; in Xcode, select the sdef file and choose File >
Open As > Plain Text File.

As you add information to an sdef file, you can verify that the file is still valid (semantically correct)
by opening it with Script Editor or Xcode (in Mac OS X version 10.4). If those applications cannot
parse the file, you will see “Nothing to see here; move along.” displayed in the dictionary viewer.
You can then open the Console log to see specific parsing errors.

Important: To test your application's scriptability after making changes to your sdef file, you must
quit the application, rebuild, and relaunch it to pick up the changes. In addition, the Script Editor
application caches scriptability information, so you may need to quit and relaunch Script Editor as
well.

Checking an sdef File with xmllint

You can also validate your sdef with the xmllint tool, using a command line like the following:

xmllint --valid YourApp.sdef

The --valid parameter causes the xmllint tool to determine if the document is a valid instance of
the included Document Type Definition (DTD). By default, xmllint also checks to determine if the
document is well-formed. (In “Version and document type in an sdef file” (page 45), you can see
how the sdef.dtd file is specified.)

Examining Scriptability Information in Your Application

The description methods of various Cocoa scripting classes can provide useful information. You
can view this information during a debugging session with the print object command in the GDB
debugger. (This command can be abbreviated as po.) For example, you can examine the information
Cocoa scripting has extracted from your sdef file or script suite and script terminology files. To do
so, follow these steps:

1. Debug the application in Xcode.

2. Break anywhere in the application.

3. Open the Debugger Console Log and enter this command:

print object [NSClassFromString(@"NSScriptSuiteRegistry") sharedScriptSuiteRegistry]

As a result of these steps, you will get a detailed listing of the scriptability information
NSScriptSuiteRegistry3 has loaded for the application. Listing 8-4 shows just the get and set
command information from that output.

Debugging Scriptability Information 95
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

Listing 8-4 Partial output of NSScriptSuiteRegistry information

Command: get ('core'/'getd')
Implementation class: NSGetCommand
Name: "get", description: "Returns the value of the specified object(s)."
Unnamed argument ('----'), type: specifier ('obj '), optional: no

(No user-readable name or description needed for unnamed arguments)
Result type: any ('****')

Description: <none>
Command: set ('core'/'setd')

Implementation class: NSSetCommand
Name: "set", description: "Sets the value of the specified object(s)."
Unnamed argument ('----'), type: specifier ('obj '), optional: no

(No user-readable name or description needed for unnamed arguments)
Argument: Value ('data'), type: any ('****'), optional: no

Name: "to", description: "The new value."
Result type: <none> ('null')

Description: <none>

Similarly, you can get descriptions of instances of the NSScriptCommand and NSAppleEventDescriptor
classes. For example, you can use the following command at a break point during script command
execution:

print object [NSClassFromString(@"NSScriptCommand") currentCommand]

If you need to know more about specific Apple events received by your application, you can examine
the information for the Apple event that triggered the current scripting command with a statement
like the following:

print object [[NSClassFromString(@"NSScriptCommand") currentCommand] appleEvent]

You can get similar information by using NSLog statements in your application, allowing you to track
execution through your code as you implement scriptability support. For example, the Sketch
application contains the file my.h. That file provides definitions to turn logging on or off based on
the value of myMasterSwitch, shown in Listing 8-5. Set it to 1, recompile, and any NSLog statements
in your application will be executed:

Listing 8-5 Turning on log statements

#define myMasterSwitch (0)

#if myMasterSwitch
#define myLog1(x) NSLog(x)
#define myLog2(x,y) NSLog(x,y)
#else
#define myLog1(x)
#define myLog2(x,y)
#endif

To dump information for a command object in Sketch, you could place this NSLog statement in the
performDefaultImplementation method of the SKTAlignCommand class:

myLog2(@"SKTAlignCommand performDefaultImplementation command = %@", self);

Here's the result, from Xcode's Console window (after setting myMasterSwitch to 1 in my.h and
recompiling):

96 Debugging Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

Listing 8-6 NSLog output for SKTAlignCommand

2006-02-01 13:15:31.622 Sketch[1662] ME SKTAlignCommand
performDefaultImplementation command = Sketch Suite.align

Direct Parameter: <CFArray 0x3d3780 [0xa073a150]>{type = mutable-small,
count = 2, values = (

0 : <NSIndexSpecifier: graphics 1 of orderedDocuments named "SketchDoc">
1 : <NSIndexSpecifier: graphics 2 of orderedDocuments named "SketchDoc">

)}
Receivers: (null)
Arguments: {

"" = (
<NSIndexSpecifier: graphics 1 of orderedDocuments named "SketchDoc">,
<NSIndexSpecifier: graphics 2 of orderedDocuments named "SketchDoc">

);
toEdge = 1986359907;

}

In this output, you can see that the direct parameter uses index specifiers to specify two graphics.
The direct parameter (with the same two specifiers) is also displayed in the arguments array, identified
by the empty string ("") key. The edge to align the graphics to is also provided as an argument, with
the key "toEdge".

Additional Debugging Tips

There are a number of Apple event debugging tips that work well both for applications that use the
Apple Event Manager directly and those that use frameworks such as Cocoa. For example, the chapter
Testing and Debugging Apple Event Code in Apple Events Programming Guide describes how you can:

 ■ Determine if your application is receiving Apple events (and log the information in those events).

 ■ Use Script Editor as a test tool to send events to your application.

 ■ Observe Apple events for multiple applications.

 ■ Find third-party resources for monitoring and debugging Apple events and scriptable applications.

Performance Issues for Scriptability

Performance considerations should be an integral part of your test plan, so that as you implement
your application, you always know when its performance increases or decreases. You may have a
pretty good idea of which code paths are most likely to cause trouble, but acquiring regular timing
information will help avoid surprises.

In general, you won't have to worry about performance in receiving Apple events and translating
them into command objects, as applications don't commonly receive great numbers of Apple events,
and Cocoa can decode them quite rapidly. However, your application should not rely on Apple events
to communicate information that is more suitable to a lighter weight form of communication, such
as notifications. See System-Level Technologies in Mac OS X Technology Overview for more information
on the interprocess communications options available in Mac OS X.

Additional Debugging Tips 97
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

If an Apple event initiates a script command that requires your application to perform an asynchronous
(and perhaps lengthy) operation, you can suspend the command and resume it when the operation
is complete, as described in “Suspending and Resuming Apple Events and Script Commands” (page
113). Depending on the operation, you may want to provide progress information while the command
is suspended. However, suspending a command (or an Apple event) does not prevent the originating
script from timing out if your application takes too long to respond to an event.

Performance can also be an issue in determining how to implement a particular application script
command. For example, it may be easier to implement an object-first command, where the command
calls a method for each object on which it operates. However, using an object-first approach may have
performance consequences in cases where significant overhead is incurred for each object, especially
when dealing with large numbers of objects. As an alternative, using the verb-first approach may
allow you to minimize overhead and optimize operations on multiple objects. These approaches are
described in “Object-first Versus Verb-first Script Commands” (page 78).

For most applications, performance of Cocoa scripting's default handling of whose clauses should be
sufficient. However, if you find the need to speed it up, you can use the mechanism described in
“Implementing A Method for Evaluating Object Specifiers” (page 70).

Cocoa scripting relies on key-value coding (KVC) to get and set values and find objects in your
application. Performance of KVC can vary depending on the methods you implement to support it.
This is especially true for operations on arrays. For tips on handling these issues, see “Performance
Considerations With KVC” (page 58).

For a general introduction to performance issues, see Getting Started with Performance.

98 Performance Issues for Scriptability
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 8

Testing, Debugging, and Performance

The tables in this chapter provide brief descriptions for the listed Cocoa scripting classes. The
accompanying material provides information on when your application uses these classes, as well
as hints on which ones you might need to subclass.

About thirty public classes in Cocoa's Foundation framework support the basic structure of Cocoa
scripting. Several methods in the Application Kit framework add scriptability features for applications,
windows, documents, and text objects. Together, this provides support for the AppleScript commands
listed in “Summary of AppleScript Command Support” (page 87) (such as get, set, move, delete,
and so on).

In many cases, Cocoa scripting creates and manipulates instances of these classes, such that your
application needs only to respond when a method of a particular application object is invoked. That
is, your application rarely needs to declare or instantiate any of the basic Cocoa scripting classes.

On the other hand, some applications will need to define subclasses of one or more of Cocoa scripting's
command classes to provide support for operations specific to the application. Even in those cases,
however, the application is not responsible for creating instances of the commands—Cocoa scripting
does that, based on the scriptability information provided in the application's sdef file. The process
of working with commands is described in detail in “Script Commands” (page 73).

There is one case where your application typically creates instances of Cocoa scripting classes. In
object specifier methods for your scriptable classes, you'll create instances of the object specifier classes
listed in Table 9-2 (page 101).

Script Commands and Scriptability Information

The following classes provide the base class for script commands, the context in which commands
are executed, and the scriptability information associated with an application. Instances of these
classes are created automatically by the Cocoa scripting, in a process described in “Script Commands
Overview” (page 73). Except for NSScriptCommand, most applications will not need to subclass or
even call methods of these classes.

Script Commands and Scriptability Information 99
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

Table 9-1 Scripting information and command classes

DescriptionClass

A shared instance of this class loads and registers the scriptability
information associated with an application, whether from sdef
files or the older script suite and script terminology files. Provides
methods to get loaded suites, class descriptions, and command
descriptions, but applications rarely call these methods.

NSScriptSuiteRegistry

Abstract class that provides the interface for querying the
properties of a class. Instantiated by the global instance of
NSScriptSuiteRegistry when it loads the application's
scriptability information.

NSClassDescription

A subclass of NSClassDescription that represents a description
of a scriptable class in a script suite. Provides methods to get
attributes, relationships, supported commands, and related
information for a scriptable class. Instantiated by the global
instance of NSScriptSuiteRegistry when it loads the
application's scriptability information.

NSScriptClassDescription

A subclass of NSObject that represents a definition of a command
supported by a suite. Provides methods to get command class
and return and argument types for a script command class.
Instantiated by the global instance of NSScriptSuiteRegistry
when it loads the application's scriptability information.

NSScriptCommandDescription

Encapsulates an AppleScript command sent to an application as
an Apple event. Uses its methods to evaluate object references
(receivers and arguments) and execute the command. Cocoa
scripting subclasses for the major AppleScript commands are
described in Table 9-4 (page 103). You can create your own
subclasses to handle operations specific to your application. For
more information, see “Object-first Versus Verb-first Script
Commands” (page 78).

NSScriptCommand

Represents the context in which an AppleScript command is
executed and tracks global state related to that command. You
do not need to subclass this class.

NSScriptExecutionContext

Object Specifiers, Logical Tests, and Related Categories

NSScriptObjectSpecifier, an abstract class. Instances of these classes—object specifiers—know
how to evaluate themselves within the context of a container object specifier. Some of these classes
represent relative or logical tests performed with object specifiers (particularly NSWhoseSpecifier
objects).

100 Object Specifiers, Logical Tests, and Related Categories
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

These are among the few classes provided by Cocoa scripting that your application routinely
instantiates. It does so when creating object specifiers. You shouldn’t need to subclass these classes,
but you will need to implement some of the methods in the described categories, particularly in
providing object specifier methods for your scriptable objects. For detailed information, see “Object
Specifiers” (page 63).

Table 9-2 Object specifiers and related classes

DescriptionClass or category

An abstract parent class for subclasses that represent
AppleScript references. An object specifier knows how to
evaluate itself (to actual objects) in the context of a container
specifier.

NSScriptObjectSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify an object in a collection by index. Though scripters
typically specify one-based items, an index specifier, which
typically locates objects within an array that correspond to the
specified items, uses zero-based values.

NSIndexSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify the middle object in a collection.

NSMiddleSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify an object in a collection by name.

NSNameSpecifier

A subclass of NSObject for object specifiers that represent an
insertion point by reference to a point before or after another
object, or at the beginning or end of a collection. It contains an
object specifier that represents the object referred to for position.

NSPositionalSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that represent an attribute or relationship of an object.

NSPropertySpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify an arbitrary object in a collection.

NSRandomSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify a range of objects in a collection by indexes. Though
scripters typically specify a one-based range of items, a range
specifier, which typically locates objects within an array that
correspond to the specified items, uses zero-based values.

NSRangeSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify the position of an object in relation to another object.

NSRelativeSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify an object in a collection by unique ID.

NSUniqueIDSpecifier

A subclass of NSScriptObjectSpecifier for object specifiers
that specify an object in a collection that matches a specified
condition defined by a Boolean expression.

NSWhoseSpecifier

Object Specifiers, Logical Tests, and Related Categories 101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

DescriptionClass or category

Category on NSObject that defines methods that scriptable
objects can implement to provide a fully specified object
specifier to themselves within an application, and to perform
their own specifier evaluation.

NSScriptObjectSpecifiers

A subclass of NSScriptWhoseTest for objects that represent
the Boolean operations AND, OR, and NOT; used with one or more
instances of NSSpecifierTest.

NSLogicalTest

A subclass of NSScriptWhoseTest for objects that represent a
comparison between two objects (which can be object references
before being evaluated) using a given comparison method.

NSSpecifierTest

An abstract class for objects that represent Boolean expressions
(qualifiers) involving object specifiers (also called whose clauses,
as in every word whose color is blue).

NSScriptWhoseTest

Category on NSObject that defines a set of default comparison
methods useful for the comparisons in NSSpecifierTest.

NSComparisonMethods

Category on NSObject that defines a set of additional
comparison methods you may need to implement for
comparisons in cases where the correct way to compare two
objects for scripting is different from the correct way to compare
objects otherwise.

NSScriptingComparisonMethods

Note: For additional information on subclasses of NSScriptObjectSpecifier and the reference forms
they represent, see Table 6-1 (page 67) in “Object Specifiers” (page 63).

Key-Value Coding and Value Coercion

The following perform essential functions related to scripting. For information on the use of these
classes, see “Key-Value Coding and Cocoa Scripting” (page 56) and “Coercion” (page 62).

Table 9-3 Scripting utilities

DescriptionClass or category

A shared instance of this class coerces object values to objects of
another class, using information supplied by classes who register
with it. Coercions frequently are required during key-value coding.
For more information, see “Coercion” (page 62).

NSScriptCoercionHandler

Category on NSObject that defines additions to the implementation
of key-value coding related to scripting, such as getting and setting
key values by index in collections and coercing (or converting) a key
value.

NSScriptKeyValueCoding

102 Key-Value Coding and Value Coercion
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

Subclasses for Standard AppleScript Commands

The following classes implement standard AppleScript commands. They are all subclasses of
NSScriptCommand, which is described in Table 9-1 (page 100). Your application can create a subclass
of one of these classes to replace the default behavior, or to selectively modify that behavior in some
circumstances. In most cases, the default behavior should be sufficient.

For more information on working with commands, see “Script Commands” (page 73).

Table 9-4 Subclasses for standard script commands

DescriptionClass

Copies the specified scriptable object or objects (such as words, paragraphs,
images, and so on) and inserts them in the specified location. This class handles
the duplicate AppleScript command.

NSCloneCommand

Closes the specified scriptable object or objects—typically a document or
window.

NSCloseCommand

Counts the number of items of a specified class in the specified object container
(such as the number of rectangles in a document).

NSCountCommand

Creates the specified scriptable object (such as a document or graphic),
optionally supplying the new object with the specified attributes. This class
handles the make AppleScript command.

NSCreateCommand

Deletes the specified scriptable object or objects.NSDeleteCommand

Determines whether a specified scriptable object, such as a word, paragraph,
or image, exists.

NSExistsCommand

Gets the specified value or object from the specified scriptable object. For related
information, see “Getting and Setting Properties and Elements” (page 55).

NSGetCommand

Moves the specified scriptable object or objects. For related information, see
“Modifying a Standard Command” (page 86).

NSMoveCommand

Quits the specified application.NSQuitCommand

Sets one or more attributes or relationships of the specified scriptable object to
one or more values. For related information, see “Getting and Setting Properties
and Elements” (page 55).

NSSetCommand

Manipulation of Apple Events

You can use the following classes to directly manipulate Apple events and the data structures they
contain. However, you can make your application scriptable with little or no direct use of these classes.

Subclasses for Standard AppleScript Commands 103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

Table 9-5 Classes for manipulating Apple events

DescriptionClass

Represents a descriptor, the basic building block for Apple events.
Descriptors can consist of arbitrarily nested lists of other descriptors.
Every Apple event is itself a descriptor and is made up of descriptors.
For information on the underlying structure of descriptors, see Building
an Apple Event in Apple Events Programming Guide.

NSAppleEventDescriptor

Provides access to a small set of Apple Event Manager features. Used
primarily for directly registering Apple event handlers and for
suspending and resuming Apple events (described in “Suspending
and Resuming Apple Events and Script Commands” (page 113)). For
background information, see Apple Event Manager Reference and Apple
Events Programming Guide.

NSAppleEventManager

Provides the ability to load, compile, and execute scripts.NSAppleScript

104 Manipulation of Apple Events
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 9

Cocoa Scripting Classes and Categories

Whether your application is scriptable or not, Cocoa provides automatic handling for certain Apple
events that all applications receive. This chapter describes Cocoa's default support for handling those
Apple events and what your application must do to support or modify the default behavior.

Apple Event Handling Overview

All Mac OS X applications that present a graphical user interface should be able to respond to certain
Apple events that are sent by the Mac OS. These events, sometimes called the required events, include
those the application can receive at launch (the open application, open documents, print
documents, and open contents events), as well as others it receives when already running (again
including open documents and print documents, as well as the reopen and quit events). These
events can also be sent by other applications and by users executing scripts.

If an application is scriptable, it can receive additional events that target the scriptable features it
supports.

Basics of Apple Event Handling

Applications work with the Apple Event Manager to receive and extract information from Apple
events. The processing of Apple events typically follows this pattern:

1. For the Apple events an application expects to receive, it registers callback routines, called Apple
event handlers, with the Apple Event Manager.

2. When the application receives an Apple event, it uses the Apple Event Manager to dispatch the
event to the appropriate event handler and to identify the object or objects in the application on
which to perform the specified operation. (The details vary depending on the programming
environment in use.)

You can read more about this process in Apple Events Programming Guide and Apple Event Manager
Reference. The implementation of code to handle Apple events can be somewhat complex. However,
Cocoa provides a lot of built-in support for handling Apple events, minimizing the need for your
application to work directly with Apple event data structures or the Apple Event Manager.

Apple Event Handling Overview 105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple
Events

Handling Apple Events in a Cocoa Application

For every Cocoa application, the Application Kit automatically installs event handlers for Apple
events it knows how to handle, including those sent by the Mac OS. These event handlers implement
a default behavior, described in “Apple Events Sent by the Mac OS” (page 106), that in some cases
depends on code implemented by your application.

Nonscriptable Applications

A nonscriptable application can support or modify the default behavior provided by the Application
Kit's Apple event handlers in these ways:

 ■ It can implement or override the appropriate methods invoked by the Cocoa handlers, as described
in “Apple Events Sent by the Mac OS” (page 106). This is the standard mechanism.

 ■ It can install handlers to supersede the ones installed by Cocoa. To replace a specific event handler,
read the information about that event in “Apple Events Sent by the Mac OS” (page 106), then read
how to install a new handler in “Installing an Apple Event Handler” (page 111).

A nonscriptable application can also install handlers for other Apple events. But if your nonscriptable
application needs to install many handlers, you should consider making it scriptable.

Scriptable Applications

A scriptable application can support or modify the default behavior provided by the Application
Kit's Apple event handlers in the same ways a nonscriptable application can (by implementing or
overriding the appropriate methods, or by installing a replacement event handler).

For other Apple events, a scriptable application doesn't typically install handlers directly (although
it is free to do so) because it can use the script command mechanism. That mechanism, which
automatically installs handlers based on information in the application's sdef file, is summarized in
“Snapshot of Cocoa Scripting” (page 24) and described in more detail in “Script Commands” (page
73).

Important: Your scriptable application should not attempt to provide script command classes to
override the Apple event handlers installed by the Application Kit. Because your scriptability
information is not loaded until your application receives an Apple event for which no command has
been registered, the handlers installed by the Application Kit can be invoked before your handlers
are installed.

Apple Events Sent by the Mac OS

The following sections describe Apple events your application is likely to receive from the Mac OS,
the response that is expected, and the default behavior supplied by the Application Kit. Your
application can implement, or in some cases override, the appropriate methods to support or modify
the default behavior. (These events can also be sent by scripts or by other applications.)

106 Apple Events Sent by the Mac OS
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

Open Application

The open application (or launch) Apple event is received when the application is launched. The
application should perform any tasks required when a user launches it without opening or printing
any documents.

Note: The application will instead receive an open documents event if it is launched in response to
a user double-clicking a document icon.

Here is how the open application event is handled in Mac OS X version 10.4:

1. The application is launched.

2. The application determines if a new, untitled document should be created by invoking the
application delegate’s applicationShouldOpenUntitledFile:method. If the application delegate
does not implement this method, a new untitled document is created. Implement this method if
you want to control that behavior (whether or not your application is NSDocument-based.)

3. If the application delegate responds to applicationOpenUntitledFile:, that message is sent.

Otherwise:

 ■ If the application is NSDocument-based, the shared NSDocumentController is sent this message:

openUntitledDocumentAndDisplay:error:

You can modify the default behavior by overriding this method. Or you can override the
methods this method invokes (described in the Mac OS X version 10.4 documentation for
NSDocumentController).

 ■ It the application is not document-based, for a document to be created, your application
delegate must implement this method:

applicationOpenUntitledFile:

Starting in Mac OS X version 10.4, an open application Apple event may contain information about
whether the application was launched as a login item or as a service item. If so, the application typically
should only perform actions suitable to the environment in which it is launched. For example, an
application launched as a service item may not wish to open an untitled document.

For more information on how your application can check for the presence of launch information, see
“Launch Apple Event Constants” in “Apple Event Manager Constants” in Apple Event Manager
Reference.

Reopen

The reopen (or reopen application) Apple event is received when the application is reopened—for
example, when the application is open but not frontmost, and the user clicks its icon in the Dock. The
application should perform appropriate tasks—for example, it might create a new document if none
is open.

Here is how the reopen application event is handled:

Apple Events Sent by the Mac OS 107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

1. The application delegate is sent this message (if it implements the method):

applicationShouldHandleReopen:hasVisibleWindows:

2. If the method returns YES, and if there are no open windows, it attempts to create a new untitled
document in the same way as for the open application event.

You can modify the default behavior by implementing the method of the application delegate.

Open

The open (or open documents) Apple event is received when the application should open a list of
one or more documents. For example, the user may have selected document files in the Finder and
double-clicked.

Here is how the open documents event is handled in Mac OS X version 10.4 (v10.4):

 ■ If the application is NSDocument-based, the NSDocumentController is sent this message, once
for each document to be opened:

openDocumentWithContentsOfURL:display:error:

For your application to customize opening of documents in response to the open documents
Apple event, it can override this method. Or it can override the methods this method invokes.
These methods are described in the Mac OS X v10.4 documentation for NSDocumentController,
which also describes how the default implementation handles compatibility with previous versions
of the Mac OS.

 ■ If the application is not NSDocument-based:

1. The application delegate is sent this message, if it responds to it:

application:openFiles:

2. If the delegate does not respond to that message, the handler checks, in the order listed,
whether the application delegate responds to one of the following messages, and if so, sends
it:

openTempFile:
openFiles:
openFile:

For your application to open documents in response to this Apple event, it must implement
one of these methods.

Starting in Mac OS X version 10.4, the open documentsApple event may contain an optional parameter
containing search text from a Spotlight search that specified the documents to be opened. This
parameter is identified by the keyword keyAESearchText. The application should make a reasonable
effort to indicate occurrences of the search text in each opened document—for example by selecting
the text and scrolling the first or primary occurrence into view. The Application Kit does not currently
handle this parameter, but you can provide your own implementation by adding code like that shown
in Listing 10-1 (page 109) to your method that opens files, such as application:openFiles:.

108 Apple Events Sent by the Mac OS
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

Listing 10-1 Extracting the search text parameter from the current Apple event

NSString *searchString = nil;
// 1searchString = [[[[NSAppleEventManager sharedAppleEventManager]
// 2currentAppleEvent]
// 3paramDescriptorForKeyword:keyAESearchText]
// 4stringValue];
// 5// Application-specific code to highlight the searched-for text, if any.

Here's what this code snippet does:

1. It invokes the sharedAppleEventManager class method of the NSAppleEventManager class to
get an instance of the shared manager.

2. It invokes the currentAppleEvent method of the NSAppleEventManager object to get the Apple
event that is being handled on the current thread, if any, as an NSAppleEventDescriptor.

3. It invokes the paramDescriptorForKeyword: method of that class, passing the key
keyAESearchText (and obtaining another instance of NSAppleEventDescriptor).

4. It invokes the stringValuemethod of that class to get the search text, if any, coercing it to Unicode
text.

5. It selects instances of the specified text, if any, in the document, as appropriate for the application
(not shown). For example, it might scroll the primary instance into view.

Note: For information on the document scriptability features provided by Cocoa, see “Use the
Document Architecture” (page 38).

Print

The print (or print documents) Apple event is received when the application should print a list of
one or more documents.

Here is how the print event is handled in Mac OS X version 10.4:

 ■ If the application is NSDocument-based, each document to be printed is sent this message:

printDocumentWithSettings:showPrintPanel:delegate:didPrintSelector:contextInfo:

Documents are opened automatically before printing, if necessary. If a document is opened just
for printing, it is closed when printing is complete.

You can modify the default behavior by overriding the methods this method invokes (described
in the Mac OS X v10.4 documentation for NSDocumentController).

 ■ If the application is not NSDocument-based, the handler checks, in the order listed, whether the
application delegate responds to one of the following messages, and if so, sends it:

printFiles:withSettings:showPrintPanels:
printFiles:
printFile:

Apple Events Sent by the Mac OS 109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

For your application to print documents in response to this Apple event, it must implement one
of these methods.

Open Contents

The open contents Apple event is available starting in Mac OS version 10.4. This Apple event is
sent when content, such as text or an image, is dropped on the application icon—for example, when
a dragged image is dropped on the icon in the Dock. The application should use the content in an
appropriate way—for example, if a document is open, it might insert the content at the current insertion
point; if no document is open, it might open a new document and insert the provided text or image.

If your application provides a service that can accept the type of data in a received open contents
Apple event, the default handler will use the service.

Here is how the open contents event is handled:

1. It invokes this method of the application delegate, to give the application a chance to set up
services: applicationDidFinishLaunching:

This is unique, in that for all the other Apple events described here,
applicationDidFinishLaunching: is called after the described event handling behavior takes
place.

2. It invokes Carbon's default open contents Apple event handler, which uses the
application-provided service. (Carbon behavior is described in "Common Apple Events Sent by
the Mac OS" in Responding to Apple Events in Apple Events Programming Guide.

You can modify the default behavior by installing your own open contents Apple event handler.
The structure of the event is similar to the open documents event. The direct parameter consists of
a list of content data items to be opened. The descriptor type for each item in the list indicates the
type of the content ('PICT', 'TIFF', 'utf8', and so on).

Quit

The quit (or quit application) Apple event is received when your application is terminated.

Here is how the quit event is handled:

 ■ If the application is NSDocument-based, the behavior depends on the saving parameter, which
has one of these three values:

 ❏ NSSaveOptionsNo: The application quits without sending a closemessage to any document.

 ❏ NSSaveOptionsYes: Each unmodified document is sent a close message; each modified
document is sent the following message:
saveDocumentWithDelegate:didSaveSelector:contextInfo:

 ❏ NSSaveOptionsAsk: (This is the default value if no saving parameter is supplied in the event.)
If there are modified documents open, the NSDocumentController sends itself this message:

reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAllSelector:contextInfo:

110 Apple Events Sent by the Mac OS
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

 ■ If the application is not NSDocument-based, the application delegate is sent this message (if it is
implemented):

applicationShouldTerminate:

You can modify the default behavior by implementing this method.

Constants for Apple Event Handlers Installed by the Application
Kit

Table 10-1 shows the constants for the Apple event handlers installed by the Application Kit to handle
events sent by the Mac OS. Each of these events has the same event class, kCoreEventClass, which
has the value 'aevt'. Your application can use these constants for the event class and event ID when
installing replacement handlers to modify standard behavior.

These Apple event constants are defined in AppleEvents.h, a header in AE.framework, a
subframework of ApplicationServices.framework. These and other constants are described in
Apple Event Manager Reference.

Table 10-1 Event class IDs for Apple events sent by the Mac OS

ValueEvent IDApple event

'oapp'kAEOpenApplicationopen application (or launch)

'rapp'kAEReopenApplicationreopen

'odoc'kAEOpenDocumentsopen (or open documents)

'pdoc'kAEPrintDocumentsprint (or print documents)

'ocon'kAEOpenContentsopen contents

'quit'kAEQuitApplicationquit (or quit application)

Installing an Apple Event Handler

Your application, whether scriptable or not, can install Apple event handlers directly. This generally
makes sense in the following cases:

 ■ You want to customize the default handling of one of the events for which the Application Kit
installs a handler, but you can't do so in the standard way, by implementing or overriding the
methods described in “Apple Events Sent by the Mac OS” (page 106).

For example, you might want to install a handler for the open contents Apple event to override
its default behavior.

 ■ You have not made your application scriptable, but you need to handle certain Apple events not
supported automatically by the Application Kit.

Installing an Apple Event Handler 111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

If you find yourself handling more than a few Apple events this way, consider making your
application scriptable to take advantage of Cocoa scripting's built-in support for handling Apple
events.

To install an Apple event handler, you invoke this method of the NSAppleEventManager class:

setEventHandler:andSelector:forEventClass:andEventID:

The signature for the new handler should match the one shown in Listing 10-2.

Listing 10-2 Signature of an event handler function

- (void)handleAppleEvent:(NSAppleEventDescriptor *)event
withReplyEvent:(NSAppleEventDescriptor *)replyEvent;

A good place to install event handlers is in the applicationWillFinishLaunching: method of the
application delegate. At that point, the Application Kit has installed its default event handlers, so if
you install a handler for one of the same events, it will replace the Application Kit version.

Installing a Get URL Handler

Listing 10-3 shows how you could install a handler for the get URL Apple event.

Note: To work with URL events, your application will have to specify one or more keys for the
CFBundleURLTypes dictionary in its information property list file. These keys are described in the
section "CFBundleURLTypes” in Property List Key Reference in Runtime Configuration Guidelines.

Listing 10-3 Installing an Apple event handler in a Cocoa application

// 1NSAppleEventManager *appleEventManager = [NSAppleEventManager
sharedAppleEventManager];

// 2[appleEventManager setEventHandler:self
andSelector:@selector(handleGetURLEvent:withReplyEvent:)
forEventClass:kInternetEventClass andEventID:kAEGetURL];

Here’s what the code in Listing 10-3 does:

1. It gets a reference to the shared Apple Event Manager object.

2. It invokes a method of that object to install the new handler, passing:

 ■ A reference to the delegate object, self, which will handle the event.

 ■ A selector for the new get URL handler (shown in Listing 10-4 (page 113)).

 ■ The event class constant for the Apple event (from the header HIServices/InternetConfig.h
in the Application Services framework).

 ■ The event ID constant for the Apple event (from the header HIServices/InternetConfig.h
in the Application Services framework).

If an event handler is already installed for the specified event class and event ID, it is replaced.

112 Installing an Apple Event Handler
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

Implementing the Get URL Handler

Listing 10-4 provides a template for the event handler. This code resides in the implementation of
your application delegate. After this handler has been installed, it is invoked whenever the application
receives a get URL Apple event. The Apple event is passed to the handler as an instance of
NSAppleEventDescriptor.

Listing 10-4 Implementation of a get URL Apple event handler

- (void)handleGetURLEvent:(NSAppleEventDescriptor *)event
withReplyEvent:(NSAppleEventDescriptor *)replyEvent
{

// Extract the URL from the Apple event and handle it here.
}

The implementation details are left to you, but they require using methods of the
NSAppleEventDescriptor class to extract the URL from the direct parameter of the Apple event,
then performing the required operation with it (typically displaying the referenced page in a window).
For a similar example, see Listing 10-1 (page 109).

Suspending and Resuming Apple Events and Script Commands

Starting with Mac OS X version 10.3, the NSAppleEventManager class provides methods for suspending
and resuming an individual Apple event. These methods are of use for applications that respond to
Apple events without using the built-in Cocoa scripting support. For applications that do take
advantage of the Cocoa scripting support, NSScriptCommand provides methods for suspending and
resuming execution of a script command.

An application typically suspends an Apple event (or a script command) when it performs an
asynchronous operation, so that the application won’t receive any more Apple events from the same
script until it completes handling of the current event (or script command). For example, suppose the
application must display a sheet as part of obtaining information to return in a reply Apple event. If
so, it can suspend Apple events (or a script command) before displaying the sheet, insert information
into the reply Apple event after the user dismisses the sheet, then resume. This need to suspend and
resume can occur with other asynchronous operations (including those that may be open-ended or
take a long time to complete).

To suspend an Apple event, you use the NSAppleEventManagermethod suspendCurrentAppleEvent,
which returns a suspension ID (NSAppleEventManagerSuspensionID) for an Apple event being
handled on the current thread. You can pass this suspension ID to appleEventForSuspensionID:
to get an Apple event descriptor for the suspended event, or to replyAppleEventForSuspensionID:
to get a descriptor for the corresponding reply Apple event. To resume a suspended Apple event,
you pass the associated suspension ID to resumeWithSuspensionID:. In Mac OS X version 10.4, this
method can be invoked in any thread.

To suspend a script command, use the NSScriptCommand method suspendExecution. This method
suspends execution of a script command if the receiver is being executed in the current thread by the
built-in Cocoa scripting support (that is, the receiver would be returned by [NSScriptCommand
currentCommand]). You use resumeExecutionWithResult: to resume a suspended script command.
In Mac OS X version 10.4, this method can be invoked in any thread.

Suspending and Resuming Apple Events and Script Commands 113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

114 Suspending and Resuming Apple Events and Script Commands
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1 0

How Cocoa Applications Handle Apple Events

Mac OS X and Cocoa provide various tools and formats for working with scriptability information.
This appendix describes the history of those tools and shows how to convert between various
scriptability formats and versions.

Scriptability Terms

AppleScript is a mature technology that was first introduced in the early 1990’s. When scripting
support was added to the Cocoa application framework, a significant part of its ease of use depended
on its adoption of key-value coding (KVC), a mechanism for accessing an object’s properties indirectly.

When terms from KVC (some of which come from entity-relationship modeling) were used with
Cocoa scripting, some terms overlapped or conflicted with terms already in use by AppleScript. For
example, the term property has more than one distinct meaning. For definitions of these terms, see the
“Glossary” (page 137).

Additionally, there are some differences in how you use the original format for Cocoa scriptability
information (provided in script suite and script terminology files) and the current format (based on
the sdef file format). These differences are described throughout this chapter.

Changes in Scriptability Information Versions

You provide scriptability information for your application in one of the two formats described in
“Scriptability Information Formats” (page 17):

 ■ The scripting definition (or sdef) format first became available in Mac OS X version 10.2. Cocoa
scripting can interpret sdef files natively starting in Mac OS X version 10.4.

For Mac OS X version 10.3, an sdef file can be converted to a corresponding script suite and script
terminology file pair.

 ■ The script suite format, consisting of a script suite file and a corresponding script terminology
file, has been in use since scriptability support first became available in Cocoa and works in any
version. This is the only format Cocoa scripting can interpret natively prior to Mac OS X version
10.4.

Scriptability Terms 115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability
Information

The traditional Carbon mechanism for supplying scriptability information is the 'aete' resource file.
Cocoa scripting doesn't use 'aete' resources, but you can add one to your application to control how
your scriptability information is displayed by Script Editor or other dictionary viewers. Starting in
Mac OS version 10.4, however, the preferred mechanism for controlling how your scriptability
information is displayed is to use an sdef file.

Advantages of the Scripting Definition Format

Important: You can read about additional refinements to sdef usage in Cocoa applications for Mac
OS X v10.5 in the Scripting section of Foundation Release Notes.

There are a number of advantages to using the native sdef format in Mac OS X version 10.4, including:

 ■ You can assemble information describing the terminology and implementation details for your
application all in one file, so there is no need to synchronize separate files.

 ■ You have more options for specifying scriptability information. For example, you can control the
order in which information is displayed (without having to add an 'aete' resource to your
application). You can also use the hidden attribute to hide deprecated terms while still keeping
them available for backward compatibility. Or you can hide terms that are not yet ready for
release.

 ■ With an sdef, only the parts of Cocoa’s default scriptability information that you specifically
include are used by Cocoa scripting and are visible when your dictionary is displayed.

By comparison, applications that use only script suite and script terminology files will include
the terminology from all such files defined in any framework the application links to or bundles
that it loads (including the files for the full Standard and Text suites defined in the Cocoa
framework).

 ■ Script Editor can display your application’s dictionary without launching the application. However,
through Mac OS X version 10.4, it does still need to open your application to compile a script that
targets the application.

Advantages of the Script Suite Format

The main advantage of the script suite format is that it can be used in any scriptable version of Cocoa.
If your scriptable application will run in versions of the Mac OS prior to version 10.4, it must include
script suite and script terminology files. However, it can also contain an sdef file, so that it can gain
the advantages that sdef files provide when running in Mac OS X version 10.4.

Script suite and script terminology files do not allow detailed control of how your scriptability
information is displayed in a dictionary viewer. But if you need finer control of the look of your
dictionary, you can add an 'aete' resource to your application bundle. You can generate the 'aete'
by creating an sdef file for your application, then using the sdp tool to create an 'aete' resource. Or
you can create an 'aete' resource directly (some third party tools can aid in doing so).

Suite information is described in detail in “Script Suite and Script Terminology Files” (page 121).

116 Changes in Scriptability Information Versions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability Information

Converting and Updating Scriptability Information

There are several options available for converting between scriptability formats and updating
scriptability information. Remember that after making any changes to your scriptability information,
you should run your full suite of test scripts to make sure your scriptability support is working as
expected.

Creating Suite Files or 'aete' Files from a Scripting Definition

You can use the sdp tool to convert an sdef file into a pair of script suite and script terminology files
that Cocoa can work with in current or earlier versions of the operating system. However, the script
suite files may require some modification, particularly if you use sdp in Mac OS X version 10.4 to
create script suite files you will use with earlier OS versions.

You can also use sdp to create an 'aete' file from an sdef file. A Cocoa application that provides its
scriptability information in the script suite format may want to also include an 'aete' resource to
provide more control over how its scriptability information is displayed. That comes in handy in the
following situation:

1. A user tries to display your application's scripting dictionary with Script Editor (or another
dictionary viewer). Script Editor sends your application an Apple event asking for its scriptability
information.

2. If your application has an 'aete' resource, Cocoa returns that. Only the information you choose
to put in the 'aete' resource is displayed.

3. If your application does not have an 'aete' resource, Cocoa scripting creates one from the
information in any script suites available to the application. The information that gets displayed
may include terminology that you do not wish to expose.

However, you do not need an 'aete' for this purpose in Mac OS X version 10.4 if your application
uses an sdef file, because the sdef format gives you full control over what gets displayed.

You can execute a statement like the following in the Terminal application to create both script suite
files and an 'aete' resource from an sdef file:

sdp -fast -o ~myHome MyApplication.sdef

By specifying "ast" with the -f parameter, this command tells sdp to create 'aete', script suite, and
script terminology files. It actually creates a pair of script suite files for each suite element defined
in the sdef, placing them in the directory specified by the -o argument.

You can invoke sdp in a shell script build phase in Xcode if you want to make it part of your build
process. If you do so, your command invocation should include the build style as part of the target
directory. Here is an example of such a command:

/usr/bin/sdp -fast -o
"$BUILD_DIR/$BUILD_STYLE/$FULL_PRODUCT_NAME/Contents/Resources"
"$SOURCE_ROOT/MyApplication.sdef"

For more information, see the sdp man page and the Xcode documentation.

Converting and Updating Scriptability Information 117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability Information

Creating Scripting Definitions from Suite Files or 'aete' Files

In Mac OS X version 10.4, if you have existing script suite and script terminology files or a resource
file containing an 'aete' resource, you can use the desdp tool to convert them to the sdef format.
The resulting sdef will contain all the information in the original dictionary, but is likely to require
some changes, because the sdef format is more expressive than the older formats. For example, in the
older format you cannot specify the ordering of terms. For more information on the desdp tool, see
its man page.

Updating Older Scripting Definition Files for Mac OS X Version
10.4

The scripting definition format experienced a number of changes for Mac OS X version 10.4. (For a
complete listing, see the History section of the sdefman page.) If you have an existing sdef file created
for an earlier version of the Mac OS, you can use the xsltproc tool to upgrade it for Mac OS X version
10.4. You use this command line tool to apply XSLT stylesheets (such as the Mac OS X file
/usr/share/sdef/upgrade.xsl referred to in the example that follows) to XML documents (in this
case, the sdef file to be upgraded).

You can use a line like the following in the Terminal application to upgrade an sdef file named
MyApplication.sdef:

xsltproc --novalid -o MyNewApplication.sdef /usr/share/sdef/upgrade.xsl
MyApplication.sdef

In this invocation:

 ■ The --novalid argument causes the tool to skip loading the document's DTD file.

 ■ The -o argument specifies the name of the new file to create.

 ■ The /usr/share/sdef/upgrade.xsl argument specifies the file from which to obtain the upgrade
information.

 ■ The final argument, MyApplication.sdef, specifies the existing sdef file to upgrade.

For more information, see the xsltproc man page.

Editing Scriptability Information

In Mac OS X version 10.4, both Xcode and Script Editor understand the sdef format. Double-clicking
an sdef file in the Finder will launch Script Editor and display the scripting terminology in a dictionary
viewer, while double-clicking an sdef file in an Xcode project will open it in a dictionary viewer in
Xcode. Figure 1-4 (page 19) shows an sdef displayed in a dictionary viewer.

To edit an sdef file in Xcode, select the sdef file and choose File > Open As > Plain Text File. You can
also view and edit the XML for an sdef file by opening it with any plain text editor or XML editor.

You can use File > Open Dictionary in Script Editor or Xcode to choose any scriptable application
and display its dictionary.

118 Editing Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability Information

In Mac OS X version 10.3 and earlier, Cocoa scripting cannot directly parse sdef files, and neither
Xcode nor Script Editor can display native sdef files in a dictionary viewer.

For all scriptable versions of Cocoa, you can supply scriptability information in script suite files and
script terminology files. Dragging a scriptable Cocoa application that contains these files onto Script
Editor will display its dictionary. However, neither Script Editor nor Xcode can interpret script suite
and script terminology files natively to display a dictionary.

Double-clicking a script suite or script terminology file will typically open it in Property List Editor
(if you have not changed the Finder default). After opening a file in Property List Editor, you can
save it in XML format, or in a plain ASCII format that may be somewhat easier to read and work
with. You can edit suite files in any of these formats, though editing property lists with Property List
Editor has some limitations.

For information on creating a new sdef file, see “Create a Scripting Definition File” (page 45). For
information on creating a new script suite, see “Creating Your Own Script Suite Files” (page 132). If
you already have existing scriptability information, see “Converting and Updating Scriptability
Information” (page 117).

Editing Scriptability Information 119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability Information

120 Editing Scriptability Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

Evolution of Cocoa Scriptability Information

Cocoa applications can provide scriptability information in the form of script suite and script
terminology files. This format, sometimes referred to as the script suite format, has been supported
since the first version of Cocoa scripting. This chapter provides a detailed look at the use and structure
of these files.

Important: Starting in Mac OS X version 10.4, Cocoa applications can supply scripting information
in the sdef format, described in “Preparing a Scripting Definition File” (page 41). This is the preferred
format going forward.

However, if your scriptable application will run in versions of the Mac OS prior to version 10.4, it
must include script suite and script terminology files. For information on working with multiple
scriptability formats, see “Evolution of Cocoa Scriptability Information” (page 115).

When supplying scripting information in the script suite format, an application provides at least one
nonlocalized script suite file and a corresponding script terminology file. These files together describe
the scripting capabilities of the application and the terminology a scripter uses to access those
capabilities.

Script Suite Files

A script suite file describes scriptable objects in terms of their attributes, relationships, and supported
commands. You can think of a script suite file as supplying scripting information for use by Cocoa’s
internal scripting support; that information can also be used by your application. “Script Terminology
Files” (page 127) describes the files used to store the scripting terminology that corresponds to the
information in a script suite file. That terminology defines the terms actually used by scripters to
control the application.

The information in a script suite file consists of a nested list of key-value pairs. Script suites are always
property lists, but in addition they must conform to the format described in “The Structure of a Script
Suite File” (page 123). For information on creating them, see “Creating Your Own Script Suite
Files” (page 132).

Frameworks, loadable bundles, and applications that support scripting can include a script suite file
as a language-independent resource. The name of the file takes the form suiteName.scriptSuite, where
suiteName uniquely identifies the script suite file. An example would be MyApplication.scriptSuite.

Script Suite Files 121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Script suites are located in the (nonlocalized) Resources directory of an application, framework, or
bundle. For example, for a framework named MyStuff.framework, the script suite file (named
MyStuff.scriptSuite) would reside in MyStuff.framework/Resources/.

Listing B-1 shows the class description for the NSApplication class, taken from
NSCoreSuite.scriptSuite, Cocoa's script suite file for the AppleScript Standard suite. The class
description is shown as exported in “XML Property List File” format by the Property List Editor
application. You can find the full version of this script suite file on your system by following the
Resources symbolic link at /System/Library/Frameworks/Foundation.framework.

Listing B-1 NSApplication class from the script suite file for the Standard suite

<key>NSApplication</key>
<dict>

<key>AppleEventCode</key>
<string>capp</string>
<key>Attributes</key>
<dict>

<key>isActive</key>
<dict>

<key>AppleEventCode</key>
<string>pisf</string>
<key>ReadOnly</key>
<string>YES</string>
<key>Type</key>
<string>NSNumber<Bool></string>

</dict>
<key>name</key>
<dict>

<key>AppleEventCode</key>
<string>pnam</string>
<key>ReadOnly</key>
<string>YES</string>
<key>Type</key>
<string>NSString</string>

</dict>
<key>version</key>
<dict>

<key>AppleEventCode</key>
<string>vers</string>
<key>ReadOnly</key>
<string>YES</string>
<key>Type</key>
<string>NSString</string>

</dict>
</dict>
<key>Superclass</key>
<string>NSCoreSuite.AbstractObject</string>
<key>SupportedCommands</key>
<dict>

<key>NSCoreSuite.Open</key>
<string>handleOpenScriptCommand:</string>
<key>NSCoreSuite.Print</key>
<string>handlePrintScriptCommand:</string>
<key>NSCoreSuite.Quit</key>
<string>handleQuitScriptCommand:</string>

</dict>

122 Script Suite Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

<key>ToManyRelationships</key>
<dict>

<key>orderedDocuments</key>
<dict>

<key>AppleEventCode</key>
<string>docu</string>
<key>LocationRequiredToCreate</key>
<string>NO</string>
<key>ReadOnly</key>
<string>YES</string>
<key>Type</key>
<string>NSDocument</string>

</dict>
<key>orderedWindows</key>
<dict>

<key>AppleEventCode</key>
<string>cwin</string>
<key>ReadOnly</key>
<string>YES</string>
<key>Type</key>
<string>NSWindow</string>

</dict>
</dict>

</dict>

Each scriptable class in a script suite file must have a “class description” which, in key-value form,
declares the attributes and relationships of the class in terms of type and four-character code (or Apple
event code). For example, the four-character code for NSApplication in Listing B-1 (page 122) is the
string "capp". You can read more about four-character codes in “Code Constants Used in Scriptability
Information” (page 42). The primary key for a class description must be a class name such as
NSApplication that identifies a real Objective-C class.

The class description also declares the AppleScript commands the class supports and specifies the
superclass, if the superclass also supports scripting of its objects. In this case, the superclass for
NSApplication is AbstractObject, which is the root of the scriptable class hierarchy, and corresponds
to the NSObject class.

The Structure of a Script Suite File

A script suite file is a text file containing key-value pairs in the form of a series of nested dictionaries,
with two main categories: class descriptions and command descriptions.

A class description describes the attributes and relationships of a scriptable class. Relationships can
be one-to-one or one-to-many. A class description also lists the commands a class supports and
specifies whether a particular method of the class handles the command or the command’s default
implementation is used to execute the command. A description of a class can designate a scriptable
superclass, and thus inherit the attributes, relationships, and supported commands of that class. Class
descriptions for the classes defined in an application's script suite file are instantiated by the global
instance of NSScriptSuiteRegistry when it loads the application's scriptability information.

A command description defines the characteristics of an AppleScript command that the application,
framework, or bundle specifically supports. This information includes the class of the command, the
type of the return value, and the number and types of arguments. Many of the commands defined
in the Standard suite (such as copy, duplicate, move, and so on) have default implementations in

Script Suite Files 123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

subclasses of NSScriptCommand, listed in “Subclasses for Standard AppleScript Commands” (page
103). Command descriptions for the commands defined in an application's script suite file are
instantiated by the global instance of NSScriptSuiteRegistry when it loads the application's
scriptability information. For more information on the script command mechanism, see “Script
Commands” (page 73).

A script suite file may contain additional declarations, such as enumerations. For example,
NSCoreSuite.scriptSuite contains a declaration for the SaveOptions enumeration, which defines
the AppleScript values for yes, no, and ask that are used when closing a file.

The following tables describe the structure of a script suite file, including its optional and required
keys.

Table B-1 Suite dictionary

DescriptionValue type or referenceKey

Name of suite (required); the name can be
placed anywhere in the definition, as long
as it is a first-level element

NSString“name”

Four-character code for this suite (required)NSString“AppleEventCode”

optional (no classes defined by default)Class list dictionary (Table B-2)“Classes”

optional (no classes defined by default)Command list dictionary (Table
B-7 (page 126))

“Commands”

optional (no synonyms defined by default)Synonym list dictionary (Table
B-10 (page 127))

“Synonyms”

optional (no enumerations defined by
default)

Enumeration list dictionary (Table
B-11 (page 127))

“Enumerations”

Table B-2 Class list dictionary

DescriptionReferenceKey

One per each scriptable class. Must be the name of an
Objective-C class defined by Cocoa or the application.

Class dictionary (Table B-3)“className”

124 Script Suite Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Table B-3 Class dictionary

DescriptionValue type or referenceKey

Scriptable superclass; must be the name of an
Objective-C class. All attributes, relationships,
and supported commands are inherited and
can be overridden. You can use the notation
suiteName.className to designate the class.
(Optional.) You can also use the
AbstractObject class to specify a base class
your scriptable classes can inherit from that
contains no scriptability of its own.

NSString“Superclass”

Four-character code for this class (required)NSString“AppleEventCode”

Attributes of the class (optional)Property list dictionary
(Table B-4)

“Attributes”

One-to-one relationships of the class
(optional)

Property list dictionary
(Table B-4)

“ToOneRelationships”

One-to-many relationships of the class
(optional)

Property list dictionary
(Table B-4)

“ToManyRelationships”

Commands supported by the class (optional)Supported commands
dictionary (Table
B-6 (page 126))

“SupportedCommands”

Table B-4 Property list dictionary

DescriptionReferenceKey

Definition of an attribute or relationship. attributeName
should map to an instance variable of the class for
which there are accessor methods.

Property dictionary (Table
B-5)

“propertyName”

Table B-5 Property dictionary

DescriptionValue typeKey

Name of class of values of this property (required)NSString“Type”

Four-character code for this suite (required)NSString“AppleEventCode”

“Yes” or “No” (optional; “No” by default)NSString“ReadOnly”

Script Suite Files 125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Table B-6 Supported commands dictionary

DescriptionValue typeKey

Name of method this class uses to implement the command or ““ if
the default implementation is sufficient. commandName should be in
suiteName.commandName notation if command is not in the same suite
as the class.

NSString“commandName”

Table B-7 Command list dictionary

DescriptionReferenceKey

Command definition.Command dictionary (Table B-12)“commandName”

Table B-8 Command dictionary

DescriptionValue type or
reference

Key

Class of command. Set this value to
NSScriptCommand for default behavior. If not
using default, must be set to a subclass of
NSScriptCommand (required).

NSString“CommandClass”

Four-character code for this command (required)NSString“AppleEventCode”

Four-character class constant for this command
(optional; by default, is the constant for the script
suite)

NSString“AppleEventClassCode”

Class name of result of command or “” if no result
(optional; no result by default)

NSString“Type”

Four-character code for the return type of the
command. Must be present if “Type” value is
assigned. Can be “****” if the return type is
variable.

NSString“ResultAppleEventCode”

Arguments of command (optional; no arguments
by default)

Argument list
dictionary (Table
B-13)

“Arguments”

Table B-9 Argument list dictionary

DescriptionValue type or referenceKey

Name of class for this argument (required)NSString“Type”

Four-character code for this argument (required)NSString“AppleEventCode”

“Yes” or “No” (optional; “No” by default)NSString“Optional”

126 Script Suite Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Table B-10 Synonym list dictionary

DescriptionValue type or referenceKey

Class name for which four-character code is a
synonym.

NSString“Apple event code”

Table B-11 Enumeration list dictionary

DescriptionReferenceKey

One per enumeration.Enumeration dictionary (Table B-12)“enumerationName”

Table B-12 Enumeration dictionary

DescriptionValue type or referenceKey

Four-character code for this enumeration
(required)

NSString“AppleEventCode”

Enumerators in the enumeration (required)Enumerators list dictionary (Table
B-13)

“Enumerators”

Table B-13 Enumerators dictionary

DescriptionValue type or referenceKey

Four-character Apple event code for this enumerator
(required)

NSString“enumeratorName”

Script Terminology Files

A script terminology file maps AppleScript terminology—the English-like words and phrases a
scripter can use in a script, such as the first word in the first paragraph—to the class and
command descriptions in a script suite file. A script terminology file also provides valuable
documentation about an application’s scripting support, which users can examine in the Script Editor
and Xcode applications.

Note: If an application also includes an 'aete' resource, Script Editor displays the contents of that
resource instead of the script terminology. (In Mac OS X version 10.4 and later, if an application uses
an sdef file, any 'aete' file is ignored.)

Like a script suite file, a script terminology file is stored as a nested list of key-value pairs. Script
terminologies are always property lists, but in addition they must conform to the format described
in “The Structure of a Script Terminology File” (page 128). See “Creating Your Own Script Suite
Files” (page 132) for information on how to create and edit these files.

Script Terminology Files 127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Note: English is currently the only supported dialect in AppleScript. It is not recommended that you
localize your terminology for other languages.

Listing B-2 (page 128) shows the terminology for the NSApplication class, taken from
NSCoreSuite.scriptTerminology, the script terminology file for the Standard suite (provided by
Cocoa). The terminology is shown as exported in “ASCII Property List File” format by the Property
List Editor application. You can find the full version of this file on your system by following the
Resources symbolic link at /System/Library/Frameworks/Foundation.framework.

Listing B-2 NSApplication class from the script terminology file for the Standard suite

NSApplication = {
Attributes = {

isActive = {
Description = "Is this the frontmost (active) application?";
Name = frontmost;

};
name = {Description = "The name of the application."; Name = name; };
version = {Description = "The version of the application."; Name =

version; };
};
Description = "An application's top level scripting object.";
Name = application;
PluralName = applications;

};
NSColor = {Description = "A color."; Name = color; PluralName = colors; };
NSDocument = {

Attributes = {
fileName = {Description = "The document's path."; Name = path; };
isDocumentEdited = {

Description = "Has the document been modified since the last save?";
Name = modified;

};
lastComponentOfFileName = {Description = "The document's name."; Name

= name; };
};
Description = "A document.";
Name = document;
PluralName = documents;

};

The Structure of a Script Terminology File

Script terminologies, like script suite files, are stored as text files of key-value pairs. As with a script
suite file, a script terminology file consists of a series of nested dictionaries. Many of the subdictionaries
(class, command, argument, and so on) should have counterparts in the script suite file.

The following tables describe the optional and required keys for a script terminology file.

128 Script Terminology Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Table B-14 Terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of suite (required);
the name can be placed anywhere in the
definition, as long as it is a first-level element

NSString or NSArray of NSString
objects

“Name”

Human-readable description of suite
(optional; but highly recommended)

NSString“Description”

Required only if there is a corresponding
definition in the script suite file

Class list terminology dictionary
(Table B-15)

“Classes”

Required only if there is a corresponding
definition in the script suite file

Command list terminology
dictionary (Table B-19 (page 130))

“Commands”

Required only if there is a corresponding
definition in the script suite file

Class synonym list terminology
dictionary (Table B-23 (page 131))

“Synonyms”

Required only if there is a corresponding
definition in the script suite file

Enumeration terminology
dictionary (Table B-25 (page 131)

“Enumerations”

Table B-15 Class list terminology dictionary

DescriptionReferenceKey

One per each scriptable class. Must be the name
of an Objective-C class.

Class terminology dictionary (Table
B-16)

“className”

Table B-16 Class terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of class (required)NSString or NSArray of
NSString objects

“Name”

Human-readable description of class (optional;
but highly recommended)

NSString“Description”

Human-readable name for plural form of class
(required)

NSString“PluralName”

Attributes of the class (required only if there is
a corresponding definition in the script suite file)

Attribute list terminology
dictionary (Table B-17)

“Attributes”

Table B-17 Attribute list terminology dictionary

DescriptionReferenceKey

Description of attribute of the classAttribute terminology dictionary (Table B-18)“attributeName”

Script Terminology Files 129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Table B-18 Attribute terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of attribute (required).NSString or NSArray of NSString
objects

“Name”

Human readable description of attribute
(optional, but highly recommended)

NSString“Description”

“plural” or “singular” (default).NSString or NSArray of NSString
objects

“Number”

Table B-19 Command list terminology dictionary

DescriptionReferenceKey

One per each supported script
command.

Command terminology dictionary (Table
B-20)

“commandName”

Table B-20 Command terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of command (required)NSString or NSArray of NSString
objects

“Name”

Human-readable description of command
(optional; but highly recommended)

NSString“Description”

Description of command arguments (required
only if there is a definition)

Argument list terminology
dictionary (Table B-21)

“Arguments”

Table B-21 Argument list terminology dictionary

DescriptionReferenceKey

Descriptions of command arguments.Argument terminology dictionary (Table
B-22)

“argumentName”

Table B-22 Argument terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of argument
(required)

NSString or NSArray of NSString
objects

“Name”

Human-readable description of argument
(optional, but highly recommended)

NSString“Description”

“masculine”, “feminine”, “none” (default)NSString or NSArray of NSString
objects

“Sex”

130 Script Terminology Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

DescriptionValue type or referenceKey

“plural” or “singular” (default)NSString or NSArray of NSString
objects

“Number”

Table B-23 Class synonym list terminology dictionary

DescriptionReferenceKey

Descriptions of constant synonyms
for class

Class synonym terminology dictionary
(Table B-24)

“Apple event code”

Table B-24 Class synonym terminology dictionary

DescriptionValue type or referenceKey

Human-readable name of class (required)NSString or NSArray of
NSString objects

“Name”

Human-readable description of class (optional)NSString“Description”

Human-readable name of plural form of class
(required)

NSString“PluralName”

Table B-25 Enumeration list terminology dictionary

DescriptionReferenceKey

One per enumeration (required).Enumerators list terminology dictionary
(Table B-26)

“enumerationName”

Table B-26 Enumerators list terminology dictionary

DescriptionValue type or referenceKey

One per enumerator (required).Enumerator terminology dictionary (Table
B-27)

“enumeratorName”

Table B-27 Enumerator terminology dictionary

DescriptionValue type or referenceKey

Human-readable description of enumerator (optional)NSString“Description”

Human-readable name of enumerator (required)NSString“Name”

Script Terminology Files 131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Cocoa Scripting’s Built-in Script Suites

Cocoa scripting provides two suites of standard scripting information: the Standard (or Core) suite
and the Text suite. These suites define scriptability information for basic AppleScript commands,
including copy, count, create, delete, exists, and move. They also provide information for basic
AppleScript classes, such as application, document, window, and text, and for corresponding Cocoa
classes, such as NSApplication, NSDocument, NSWindow, and NSTextStorage.

The Standard and Text suites are introduced in “Built-in Support for Standard and Text Suites” (page
20) and described in more detail in “Use the Document Architecture” (page 38) and “Access the Text
Suite” (page 39).

Note: This chapter describes how to work with Cocoa scriptability information in the script suite and
script terminology format. If your application supplies its scriptability information through an sdef,
you declare scriptability information for the Standard and Text suites as described in “Create a
Scripting Definition File” (page 45).

Creating Your Own Script Suite Files

To add to Cocoa’s built-in scripting support using the script suite and script terminology approach,
your application supplies files describing the scriptability information for the objects, properties, and
commands it supports. For example, an application that can draw shapes (such as the Sketch
application) might specify that it supports circle, rectangle, and line objects, with color and
location properties. It might also support commands such as rotate and scale, in addition to
standard commands such as get, set, and delete.

To create a script suite file or script terminology file, you can either use a plain text or XML editor,
or use an application such as Property List Editor, which provides built-in support for creating
property lists. Property List Editor is included with the Mac OS X developer tools. If you have existing
scriptability information, see “Converting and Updating Scriptability Information” (page 117) for
information on how to convert between various formats.

You construct files that contain entries for the classes, commands, and enumerations used by your
application, including the codes, method, and class information used by Cocoa and the terminology
used by scripters. Your files must follow the formats described in “The Structure of a Script Suite
File” (page 123) and “The Structure of a Script Terminology File” (page 128). If you use the Property
List Editor application, you can ensure that you are creating a valid property list. You can also save
your scriptability information in several formats:

 ■ As a script suite file or script terminology file: these files are stored in XML format.

 ■ As a text file with XML tags: for an example, see Listing B-1 (page 122).

 ■ As a text file in plain ASCII format: for an example, see Listing B-2 (page 128).

These formats can be opened by various text editors or by Property List Editor. As a result, you can
freely work with a script suite file in whichever format is most convenient for you.

132 Cocoa Scripting’s Built-in Script Suites
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

Figure B-1 shows the Standard suite (from the file NSCoreSuite.scriptSuite) as displayed in the
Property List Editor application. In this figure, the Classes and the NSApplication class definition
are expanded so that attributes, supported commands, and relationships for NSApplication are
visible.

The AbstractObject class specifies a base class that your scriptable classes can inherit from when
their actual superclass has no scriptability support.

Figure B-1 Script suite for the Standard suite in Property List Editor

For examples of script suites and sample code for scriptable applications, see the Sketch and TextEdit
example projects, .

Creating Your Own Script Suite Files 133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

134 Creating Your Own Script Suite Files
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Script Suite and Script Terminology Files

This table describes the changes to Cocoa Scripting Guide.

NotesDate

Added pointers to new information in Mac OS X version 10.5.2007-10-31

Noted in several places that you can read about changes in Cocoa scripting
support for Mac OS X v10.5, including changes in sdef usage, in the
Scripting section of Foundation Release Notes.

Converted “Evolution of Cocoa Scriptability Information” (page 115) to an
Appendix.

Converted “Script Suite and Script Terminology Files” (page 121) to an
Appendix and noted that the information it contains is useful primarily if
your scriptable application will run in versions of the Mac OS prior to
version 10.4. (Otherwise, you can use the sdef format, described in
“Preparing a Scripting Definition File” (page 41).)

Added information on handling the open application Apple event.2007-07-23

For details, see “Open Application” (page 107) section.

In the section “Maintain KVC Compliance” (page 56), added
implementation details for your overrides of valueIn<Key>WithName:
and valueIn<Key>WithUniqueID:.

Added information about NSObject and the item AppleScript class. Added
reference and related document links to the HTML table of contents.

2006-04-04

Updated scriptability information in Table 3-1 (page 38).

Modified test script in Listing 8-1 (page 92).

Combines and updates information formerly in two documents, "Sdef
Scriptability Guide for Cocoa" and "Scriptable Application Programming
Guide for Cocoa."

2006-03-08

135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Revised “Overview of Cocoa Support for Scriptable Applications” (page
13) to provide a more complete introduction to Cocoa scripting. Changes
include a description of the AppleScript object model, a table of the basic
data types supported by Cocoa scripting, and expanded information on
scriptability information formats.

Provided “Implementing a Scriptable Application” (page 33), a revision
to the former "Key Steps" chapter. It includes a revised set of
implementation steps (in the section “Implementation Guidelines” (page
33)).

Provided “Preparing a Scripting Definition File” (page 41), which revises
and merges two former chapters, "Creating a Scripting Definition" and
"Scripting Definition Reference."

Added the largely new chapters “Getting and Setting Properties and
Elements” (page 55) and “Object Specifiers” (page 63). The former provides
many details on working with KVC (including revised accessor samples),
as well as a section on the properties property. The latter includes new
illustrations and code samples, and includes conceptual information
previously located in NSScriptObjectSpecifier and
NSScriptObjectSpecifiers.

Revised and expanded the chapter “Script Commands” (page 73), adding
an illustration, sample code, and a comprehensive table that describes
default support for AppleScript commands and how to customize it (Table
7-1 (page 88)).

Revised the chapter “Testing, Debugging, and Performance” (page 91),
adding new testing tips and a section on performance.

Revised the chapters “Cocoa Scripting Classes and Categories” (page 99),
“How Cocoa Applications Handle Apple Events” (page 105), and “Evolution
of Cocoa Scriptability Information” (page 115) (formerly a section in
"Scripting Definition File Reference").

Merged script suite information into the chapter “Script Suite and Script
Terminology Files” (page 121). Added tables for enumerations and deleted
deprecated information (such as "Working With ASCII Script Suite Files").

136
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

'aete' resource A resource that serves as the
traditional mechanism for providing scriptability
information in a Carbon application. An 'aete'
resource can also be included in a Cocoa
application to control how scriptability
information is displayed in a dictionary viewer,
by applications such as Script Editor and Xcode.
Starting in Mac OS X version 10.4, it is not needed
for this purpose, for applications that supply their
scriptability information in the sdef format.

Apple event An interprocess message that can
specify complex operations and data. An Apple
event encapsulates a high-level task in a single
package that can be passed across process
boundaries, performed, and responded to with a
reply event.

Apple Event Manager The Mac OS X API for
creating and sending Apple events, and for
receiving, extracting information from, and
responding to them.

Apple event translator A part of Cocoa scripting
that uses scriptability information supplied by an
application to evaluate an Apple event received
by the application. In many cases, an Apple event
is "translated" into a script command object that
performs the action specified by the event.

AppleScript A scripting language that makes
possible direct control of scriptable applications
and scriptable parts of the Mac OS. See also Open
Scripting Architecture (OSA).

AppleScript object model A hierarchical
structure that, for a given application, specifies
the classes of objects a scripter can work with in
scripts, the accessible properties of those objects,
and the inheritance and containment relationships
for those objects.

attribute (1) In key-value coding (and in suite
files), refers to a property that is a simple value,
such as a scalar, string, or Boolean value, or to
immutable objects such as NSColor and NSNumber
objects. In a scripting definition file, the equivalent
of an attribute is a property. A graphic object
might have a color attribute (or property). (2) In
AppleScript, one of the two main descriptor data
types that make up an Apple event. Not
commonly used by scriptable Cocoa applications.
(3) In an XML file, a name/value pair that specifies
a single property for an element.

class description A scripting definition file (sdef)
entry that describes a scriptable class, including
its attributes and relationships and the KVC keys
that Cocoa scripting uses to gain access to its
values. When the sdef is loaded, the information
is stored in an instance of
NSScriptClassDescription.

Cocoa scripting In the Cocoa application
framework, the support for creating scriptable
applications. Cocoa scripting includes classes,
categories, and scriptability information, which
together support much of AppleScript's Standard
suite.

command description A scripting definition file
(sdef) entry that describes the characteristics of
an AppleScript command, including argument
names (if any), command result type (if any),
AppleScript command name, and name of the
Objective-C class Cocoa instantiates to perform
the command. When the sdef is loaded, the
information is stored in an instance of
NSScriptCommandDescription.

element (1) In a scripting definition file (or an
AppleScript dictionary viewer), a characteristic
of an object that refers to a contained collection of
related objects. Synonymous with a key-value

137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Glossary

coding to-many relationship. A document object
might have a graphics element (or to-many
relationship). (2) In an XML file, such as a scripting
definition file, a tag-delimited unit of data.

four-character code Four bytes of data that can
be expressed as a string of four characters in the
Mac OS Roman encoding. Used to uniquely
identify terms and other items in an application's
scriptability information.

implicitly specified subcontainer An object
container that can be specified in an AppleScript
script by context, rather than by an explicit
reference. For example, explicitly specifying a
word object in a document object might require
this script reference: fourth word of text of
front document. But if the application provides
support for implicitly specifying the text
container, the script reference can be simplified
to this: fourth word of front document.

key (1) In key-value coding, a string that identifies
a property. (2) In property lists, the part of a
key-value pair that identifies a value in the list.

key-value coding (KVC) A mechanism (widely
used in Cocoa) for accessing object properties
indirectly by key. Cocoa scripting relies on KVC
both to get and set properties of scriptable objects,
and to identify the objects on which commands
should operate.

keyword A four-character code used by the Apple
Event Manager to identify a specific descriptor
within an Apple event. Cocoa applications don’t
typically access the contents of individual Apple
events directly, so they don’t work with keywords,
although they can do so by using methods of
NSAppleEventDescriptor or by directly calling
C functions of the Apple Event Manager.

KVC See key-value coding (KVC).

Model-View-Controller (MVC) A design pattern
that assigns objects in an application to one of
three roles and recommends a distinct separation
among model, view, and controller objects. This
is one of the central design patterns for Cocoa
applications.

MVC See Model-View-Controller (MVC).

object containment hierarchy The hierarchy of
objects in a running application. AppleScript and
Cocoa scripting depend on the object containment
hierarchy to locate the objects on which to perform
an operation. See also AppleScript object model.

object-first command A script command that
invokes a specified method of each specified
receiver. With an object-first command, objects
perform the specified action on themselves.
Compare verb-first command.

object specifier Locates a scriptable object within
an application’s containment hierarchy. Cocoa
scripting makes use of object specifiers to find
objects in your application while executing a script
command and to return information requested by
a script. See also object containment hierarchy.

Open Scripting Architecture (OSA) Provides a
standard and extensible mechanism for
interapplication communication in Mac OS X.
Implemented by a number of Mac OS X
frameworks and subframeworks, including the
AE framework (which implements the Apple
Event Manager) and the OpenScripting
framework. Also includes the AppleScript
component, which implements the AppleScript
language.

property (1) In a scripting definition file, a
characteristic of a class that has a single value and
is identified by a label. Synonymous with a
key-value coding (KVC) attribute or to-one
relationship. A window's name property would
be equivalent to a KVC attribute, while its
document property would be equivalent to a KVC
to-one relationship. (2) In KVC, can refer to any
of the three different kinds of object values that
KVC can access: attributes, to-one relationships,
and to-many relationships.

receivers The object or objects in an application
designated to receive an AppleScript command.

receivers specifier In a script command object,
the object specifier that specifies the objects in the
application that should receive an command.

reference In an AppleScript script, the part of a
script statement that identifies an object.
Constructions such as first rectangle and
document "My Notes" are references. Cocoa

138
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

scripting provides built-in support for
AppleScript's standard reference forms, listed in
Table 6-1 (page 67).

required events Certain Apple events that all
Mac OS X applications that present a graphical
user interface should be able to respond to. These
events can be sent by the Mac OS, as well as by
other applications and by users executing scripts.
They include the open application, open
documents, print documents, open contents,
reopen, and quit events.

scriptability information Formally lays out the
AppleScript object model for an application and
maps it to application objects. Scriptability
information specifies the terminology available
for use in scripts that target the application. It also
provides information, used by AppleScript and
by Cocoa, about how support for that terminology
is implemented in the application. See also
scripting definition format, script suite format.

scriptable application An application that makes
its operations and data available in response to
Apple events, which are AppleScript messages.

script command object An object that
encapsulates all the information needed to
perform an AppleScript command. Cocoa
scripting creates script command objects in
response to Apple events received by the
application. A script command object is
instantiated from NSScriptCommand or from one
of its subclasses—either those provided by Cocoa
scripting to handle standard AppleScript
commands, or those defined by your application
to perform its unique operations.

scripting definition file A file in the scripting
definition format that provides the scriptability
information for an application. A scripting
definition file has the extension .sdef and is also
called an sdef file or simply an sdef. Compare script
suite file, script terminology file.

scripting definition format An XML-based
format that describes a set of scriptability terms
and the commands, classes, constants, and other
information used to support an application's
scriptability. This format was introduced in Mac

OS X version 10.2 and is used natively by Cocoa
scripting starting in Mac OS X version 10.4. Also
called sdef format. Compare script suite format.

script suite file A property list file, in a specific
format, that describes scriptable classes in terms
of their attributes, relationships, and supported
commands and that has the extension
.scriptSuite. Script suite files, together with
corresponding script terminology files, declare
the scriptability information for a scriptable
application. See also script terminology file.

script suite format A format for providing
scriptability information in the form of property
list files, consisting of a script suite file together
with a corresponding script terminology file.
Compare scripting definition format.

script terminology file A property list file, in a
specific format, that provides AppleScript
terminology—the English-like words and phrases
a scripter can use in a script—for the class and
command descriptions in the corresponding script
suite file. A script terminology file has the
extension .scriptTerminology. Together with a
corresponding script suite file, it declares the
scriptability information for a scriptable
application. See also script suite file.

sdef See scripting definition file.

Standard suite The scriptability information for
a set of standard AppleScript terms that scriptable
applications should support if possible. The
Standard suite contains commands such as count,
delete, duplicate, and make, and classes such
as application, document, and window. Cocoa
scripting provides a great deal of automatic
support for the Standard suite.

suite Within an application's scriptability
information, terms associated with related
operations. For example, operations involving
text, graphics, or databases are generally collected
into separate text, graphics, and database suites.

to-many relationship In key-value coding (and
in suite files), a property whose value is a
collection of related objects. In a scripting
definition file, represented by an element element.

139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

to-one relationship In key-value coding (and in
suite files), a property whose value has properties
of its own. In a scripting definition file,
represented by a property element.

top-level specifier In a nested object specifier, an
object that has no container specifier. It represents
the outermost container in the containment
hierarchy. In most cases, the application object is
the top-level specifier.

verb-first command A script command that
invokes its performDefaultImplementation
method. With a verb-first command, a single
method performs the action (or verb) on any
number of objects. Compare object-first command.

140
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

	Cocoa Scripting Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of Cocoa Support for Scriptable Applications
	AppleScript and Scriptable Applications
	The AppleScript Object Model
	Scriptability Information
	Scriptability Information Formats
	Viewing Scripting Terminology
	Built-in Support for Standard and Text Suites
	Built-in Support for Basic AppleScript Types
	Loading Scriptability Information

	Reliance on Key-Value Coding
	Interaction With Cocoa Bindings and Core Data
	Scriptability and Undo
	Snapshot of Cocoa Scripting
	A Real World Scripting Example
	Current Limitations of Cocoa Scripting Support

	Designing for Scriptability
	Designing a New Scriptable Application
	Adding Scriptability to an Existing Application

	Implementing a Scriptable Application
	Implementation Guidelines
	Supply a Scripting Definition File
	Concentrate Scriptable Behavior in Model Objects
	Provide Keys for Key-Value Coding
	Add the Scripting Definition File to Your Xcode Project
	Turn On Scripting Support in Your Application
	Implement Object Specifier Methods for Scriptable Classes
	Use the Document Architecture
	Access the Text Suite

	Preparing a Scripting Definition File
	Structure of a Scripting Definition File
	Code Constants Used in Scriptability Information
	Features Common to Many Scripting Definition File Elements
	High-level XML Elements
	XML Version and Document Type Definition
	Dictionary Element
	Suite Elements

	Create a Scripting Definition File
	Add Information to the Scripting Definition File
	Class Elements
	Property Elements
	Element Elements
	Contents Elements

	Command Elements
	Enumeration Elements
	Record-Type Elements
	Value-Type Elements
	Cocoa Elements

	Getting and Setting Properties and Elements
	Overview of Getting and Setting Values
	Key-Value Coding and Cocoa Scripting
	Maintain KVC Compliance
	On Omitting KVC Accessors
	Performance Considerations With KVC
	Interaction With Key-Value Observing
	KVC Conversion of Scalar and Structure Values
	Scripting Additions to KVC

	Sample KVC-Compliant Accessor Methods
	Single-Value Access
	Collection Value Access

	Special Accessor Methods
	Support for the Properties Property
	Coercion

	Object Specifiers
	Overview of Object Specifiers
	Object Specifiers and KVC
	When to Implement an Object Specifier Method
	About Object Specifier Classes
	A Closer Look at an Object Specifier
	Evaluation of Nested Specifiers

	Cocoa Object Specifier Classes
	Implementing the Object Specifier Method
	An Object Specifier Method for a Rectangle in Sketch
	Specifying the Application Object as a Container

	Implementing A Method for Evaluating Object Specifiers
	Implicitly Specified Subcontainers

	Script Commands
	Script Commands Overview
	Script Command Classes Supplied by Cocoa
	Script Command Scriptability Information
	Script Command Components
	Script Command Creation
	Script Command Execution
	Script Commands and Object Specifiers
	Error Handling
	Object-first Versus Verb-first Script Commands
	About Object-first Script Commands
	About Verb-first Script Commands
	Mixing Object-first and Verb-first Behavior

	Steps for Implementing a New or Modified Script Command

	Implementing an Object-First Command—Rotate
	Implementing a Verb-First Command—Align
	Modifying a Standard Command
	A Verb-first Move Command
	An Object-first Move Command

	Summary of AppleScript Command Support

	Testing, Debugging, and Performance
	Scriptability Test Plan
	Use AppleScript Scripts to Test Your Application
	Turn On Debugging Output for Scripting
	Steps for Turning On Cocoa Debugging Output
	Sample Output

	Debugging Scriptability Information
	Checking an sdef File with xmllint
	Examining Scriptability Information in Your Application

	Additional Debugging Tips
	Performance Issues for Scriptability

	Cocoa Scripting Classes and Categories
	Script Commands and Scriptability Information
	Object Specifiers, Logical Tests, and Related Categories
	Key-Value Coding and Value Coercion
	Subclasses for Standard AppleScript Commands
	Manipulation of Apple Events

	How Cocoa Applications Handle Apple Events
	Apple Event Handling Overview
	Basics of Apple Event Handling
	Handling Apple Events in a Cocoa Application
	Nonscriptable Applications
	Scriptable Applications

	Apple Events Sent by the Mac OS
	Open Application
	Reopen
	Open
	Print
	Open Contents
	Quit
	Constants for Apple Event Handlers Installed by the Application Kit

	Installing an Apple Event Handler
	Installing a Get URL Handler
	Implementing the Get URL Handler

	Suspending and Resuming Apple Events and Script Commands

	Appendix A: Evolution of Cocoa Scriptability Information
	Scriptability Terms
	Changes in Scriptability Information Versions
	Advantages of the Scripting Definition Format
	Advantages of the Script Suite Format

	Converting and Updating Scriptability Information
	Creating Suite Files or 'aete' Files from a Scripting Definition
	Creating Scripting Definitions from Suite Files or 'aete' Files
	Updating Older Scripting Definition Files for Mac OS X Version 10.4

	Editing Scriptability Information

	Appendix B: Script Suite and Script Terminology Files
	Script Suite Files
	The Structure of a Script Suite File

	Script Terminology Files
	The Structure of a Script Terminology File

	Cocoa Scripting’s Built-in Script Suites
	Creating Your Own Script Suite Files

	Revision History
	Glossary

