
Coordinate Spaces
& Transformations

in InDesign CS4 – CC  |  Oct. 2021 (3.2)

S C R I P T I N G S E C R E T S

http://www.indiscripts.com/category/projects/HurryCover

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

1. Key Concepts 02

Dealing with coordinate spaces and transformation matrices is one of the most

obscure and underappreciated exercises in InDesign scripting and programming.

The fault mainly lies with Adobe documentation, especially the Scripting DOM

reference, which does not clearly explain the topic and some of its essential keys.

This document attempts to shed some light on the beast.

2D Coordinate Systems

Within InDesign, the geometric location of a
point is defined in terms of coordinates within a

two-dimensional space. A coordinate is a pair of
numbers (usually denoted x and y ) that locate a point

relative to a given origin, according to the orientation
of two given axes and with respect to the length of
some units along each axis. These three parameters
form a 2d coordinate system.

InDesign handles multiple coordinate systems. A
given location in the layout can be expressed by differ-
ent coordinate pairs depending on the system. Users
can easily experience how coordinates and measure-
ments vary when playing with on-screen rulers, chang-
ing measurement units, moving the origin or the
Reference Point (cf. Figure 1). The actual position and
size of layout elements do not change, but both the
Control panel, the Info panel and the Transform panel
accordingly update the coordinates of the objects and
other related values such as width and height of page
items. Special display settings (e.g. Show Content Offset
and Dimensions Include Stroke Weight) also affect how
measurements display in the application interface.

Affine Maps

Every coordinate system is somewhat arbitrary.
Whatever the origin, the units and the orientations of

the axes, we can point out to the same geometric point,
or path, by simply adjusting the coordinates to the
desired coordinate system (cf. Figure 2). In other words,
we can convert any coordinate pair from one system
into another.

Fortunately such conversion is easy to describe in
mathematical terms (no matter what coordinate
systems or points we are considering). The functional
relationship between two coordinate systems is known
as an affine map. An important property of any affine
map is that it can always be entirely defined by an array
of six real numbers. (We’ll talk more about these a bit
later.)

Relative Locations & Inner Space

When rendering graphics, paths and frames,
InDesign needs to address their final locations accord-
ing to various parameters. Some are extrinsic (e.g. screen
resolution, parent window size, zoom factor, scrolling
state), other are intrinsic in that they specify the inner
geometry of the layout items and their relationships
within the publication.Figure 1. � The ruler coordinate system makes it easy to check

locations and measurements from the application interface.

HORIZONTAL RULER

REFERENCE
POINT

LOCATOR

COORDINATE PAIR

ORIGIN

VE
RT

IC
AL

 R
UL

ER

10

10
X=15

Y=16.75

X-AXIS

Y-
AX

IS

y'

x'
O'

y

xO

P

Figure 2.
The same location P can
be expressed by different
coordinate pairs — (x, y)
vs. (x' , y') — depending
on the coordinate system
we consider.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

03

As the whole document relies on a hierarchical struc-
ture that involves a lot of dependencies, geometric con-
straints and nested elements, any change made at any
level is likely to affect the location of every child object.
Consider what is happening when the user moves a
group formed by 50 rectangles (cf. Figure 3). Does this
mean that every individual rectangle is in some way
rewritten so that its inner path fits the new location?
Of course not!

To accurately manage such operations, InDesign
stores locations and geometric data through a hierar-
chical model that exactly reflects how layout objects
are nested or linked. In this model, each component
(including groups, pages, spreads, and even on-screen
views) has a virtual coordinate system (usually referred
to as its inner coordinate space) which is associated
to an array of six numbers that specify how to convert
any coordinate pair from that inner system into the parent’s
coordinate system (see Affine Maps above).

That’s it! Now when the user is moving a group of
page items, InDesign only has to change the map attri-
butes that connect the group to its parent spread (in
terms of coordinate systems). So there is no need to
update children’ locations.

Transformations
Only Re-Map Coordinates

From the user’s perspective, all goes as if page items
themselves were transformed. We can make them
smaller or wider, we can rotate them, shear them, etc.
Anyway, the most important rule to learn regarding
transformations is that a transformation never alters the
actual geometry of graphics objects.

In other words, whatever the transformations we
apply, every path point that underlies the target object
will keep its intrinsic location in the inner coordinate
space of that object.

In InDesign a transformation only affects the relation-
ship between two coordinate systems. “Transforming
an object” should be understood as changing in some
way the affine map that translates the inner coordinate
space of this object into its parent’s coordinate space.

This definition may seem quite abstract, so let me
take an example. Say you want to integrate a heart
shape vector in your layout. At some point a page item
is created storing only the geometry of this object
within its inner space (cf. Figure 4). Note that the object

Figure 4.  Inner space of a basic page
item. The heart shape vector
represents the object’s geometry,
made up by a set of path points. Here
the location of each point is expressed
relative to the inner coordinate system.

Figure 3.
When a group of 50 rectangles is moving,
InDesign doesn’t need to update the location
and the inner path points of every child item.
Instead the group tells its parent—typically, a
spread container—that its location has
changed. Technically, this is done by simply
adjusting the affine map attributes that
connect the group’s inner space to its parent
space. This way the child objects are not
modified at all (as their respective position
relative to the group remains unchanged).

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

04

is not visible yet, as we didn’t specify how and where it
is supposed to take place in the publication. To render
the page item, InDesign needs to target a device
space, that is, an imageable area where layout contents
ultimately appear, such as an on-screen window or a
printed page.

Let’s not go into details and just assume that a device
space is in turn a coordinate system which has
the ability to draw graphics. Now, suppose
that the heart shape is a direct child of
the device along the object hier-
archy. The child then can
convert any coordinate pair
from its inner coordinate
system to the device coordi-
nate system—since this is the purpose
of the affine map associated to the child.

Figure 5 shows how the device and the page item
interact via the affine map (M ). As you can see, the
device can draw the entire shape in its own coordinate
space without altering the inner geometry of the page
item: any required coordinate pair is just re-mapped
through M.

 Now remember that M is somehow encoded as a
sequence of six numeric attributes. It is easy to under-
stand that changing these attributes will cause
the device to redraw the heart shape as if 
taking place in a different coordinate
system. Figure 6 shows the result
of such “transformation”—
making the shape look
smaller in the device space.
This is just an example of
scaling the page item.

Maps, Transformations and Matrices

Before we go any further, there is an important point
to highlight: the only internal difference between
Figure 5 and Figure 6 above, is the change from M to M’.
Not only the inner geometry of the heart shape but
also the respective coordinate systems are preserved1.
This means that all about transformations regards
affine maps, and only affine maps … until the output
device space is reached.

As said earlier, an affine map M  is based on a sequence
of six numbers. Although it is not vital to understand
how these attributes operate behind the scenes, an
essential key is that, in InDesign, any transformation
T  is encoded through a sequence of six numbers too.
To put it differently: transformations and affine maps
are substantially encoded the same way and can play
the same role. In mathematical terms, applying T to M
amounts to calculate a kind of product :

M’   =  M  ×  T

where M’ refers to the resulting map (once the trans-
formation is done). Of course the above terms are not
real numbers. Each in fact is a 3-by-3 matrix that
encapsulates the corresponding sequence of attributes.

1.	 Some authors take a different approach and consider that affine
transformations actually affect coordinate systems; other argue that
graphics objects themselves undergo transformations (rather than
coordinate systems). Either point of view may be self-consistent,
depending on how the underlying concepts are defined and devel-
oped. Anyway, my personal approach is that a transformation does
only change an affine map, and that any affine map connects two
coordinate systems.

Figure 5.  When the device
(in gray) needs to draw its
contents, it communicates
with the inner coordinate
space of each child item (in
red). Thanks to the affine
map (M) associated to the
child item space, every inner
coordinate pair (x,y ) is
properly translated into
another one, (X,Y), relative
to the parent space.

(x,y)

(x,y)

CHILD COORDINATE SYSTEM

DEVICE
COORDINATE SYSTEM

(x,y)

(x',y')

CHILD COORDINATE SYSTEM

DEVICE
COORDINATE SYSTEM

Figure 6.  Altering the
affine map attributes (M')
changes the resulting
coordinates in the device
space, e.g. making the
shape look smaller. This is
how all transformations
work in InDesign—and in
many PostScript-based
applications.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

05

The reason why transformations can be encoded as
affine maps, and vice-versa, is that InDesign only sup-
ports affine transformations of the plane, a group of geo-
metric transformations that both preserve collinearity,
ratios of distance and parallel lines2. These are: trans-
lation, scaling, rotation, reflection, shear, and
any combination thereof. Figure 7 shows basic examples.

In the InDesign SDK, scripting dom and idml ter-
minologies, affine maps are often referred to as page
item transform(ation) states:

— ITransform is the “transformation matrix that maps
from the inner coordinate space to the parent coordinate
space.” (sdk)

2.	 An affine transformation always takes a parallelogram to a paral-
lelogram; and, given two parallelograms P and P’, there is always an
affine transformation that takes P to P’. This strictly equates to the
concept of affine mapping. By contrast, perspective projections are
not affine transformations.

— PageItem.transformValuesOf: “After an object is
transformed, you can get the transformation matrix that
was applied to it, using the transformValuesOf() method.”
(Scripting DOM)

— ItemTransform: “The relationship of the inner coor-
dinates of the child element to the coordinate system of the
<Spread> element (or other parent element) is defined by
the ItemTransform attribute of the child element.” (idml
specification)

These definitions all refer to the current affine map
from a coordinate space to its parent’s space, which at
a given time is stored as a property of the component.
Transformations themselves are temporary operands,
used in methods that cause an affine map to change. In
all cases, however, attributes or arguments are imple-
mented, stored and/or processed as matrix stuctures or
similar. For this reason, the term transformation
matrix in Adobe documentation may refer to either
an affine map (the state) or a transformation (the action).

Matrix Patterns

By convention every transformation matrix is written:

a b 0
c d 0
e f 1

where a, b, c, d, e, f are the numeric attributes of the
affine transformation, or map. To apply the matrix to a
given (x, y) coordinate pair, we calculate the following
product:

[x  y  1]  ×
a b 0
c d 0
e f 1

which leads to
[xa+yc+e  xb+yd+f  1].

Figure 7.  Examples of basic
transformations applied to
an heart shape (top) and to a
rectangle (bottom). The
initial geometry is shown in
light red; the resulting
shapes are shown dotted. (If
you mentally replace
rectangles with coordinate
system bases, you get the
same picture in terms of
affine mapping.)

TRANSLATION SCALING SKEW ROTATION

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

06

Ignoring the third dimension, the resulting coordi-
nate pair is finally defined by:

(x', y')  = (xa + yc + e, xb + yd + f).

But the above presentation is somewhat artificial. We
can see that the 3d matrix only allows to compound a
2d linear transformation, based on the attributes a, b, c,
d , with a 2d translation, based on the [ e  f] vector. In
two-dimensional terms, we would have as well:

[x'  y']  = [x  y]  ×
a b

+ [e  f]c d

  LINEAR TRANSFORMATION  TRANSLATION

Again, this evidences that any transformation matrix
is made up to perform an affine mapping, i. e. a linear
transformation modulo a translation.

The linear component—a, b, c, d —typically allows
to apply scaling, flipping, rotation, or skew, around
the origin of the input coordinate system, while the
translation component—e, f —allows to reposition the
result within the destination space. For this reason, the
e and f attributes are often written tx and ty instead.

Here are the most common matrix patterns:

Identity:
1 0 0
0 1 0
0 0 1

translation:
1 0 0
0 1 0
tx ty 1

scaling:
sx 0 0
0 sy 0
0 0 1

rotation:
cosq – sinq 0
sinq cosq 0
0 0 1

shear:
1 0 0

– tana 1 0
0 0 1

Note that the above rotation and shear formulas fit the
default orientation of the y-axis in InDesign (i. e. values
increasing from up to bottom) and with respect to the
sign of either the ‘rotation angle’ or the ‘shear angle’ as
shown in the gui as well as in transformation settings.
These may differ from academic patterns.

In particular, for skew mapping parallel to the y-axis,
InDesign will use something like:

0 –1 0
1 tanb 0
0 0 1

where b  denotes the shear angle relative to the x-axis.
It is not difficult to see that this matrix results from
applying a 90° rotation after the shear pattern.3
Indeed, InDesign treats any skew mapping as a com-
bination of a shear-along-x and a rotation (see Figure 8).

3.	 Viz:	 [  1   0 ] × [0  -1]  (having cos 90° = 0 and sin 90° = 1).
		 -tanb 1   1  0

IDENTITY.  Strictly
identical mapping from
the source space to the
destination space.

TRANSLATION.  Takes any
(x, y ) pair to (x +tx, y +ty ).
Allows to ‘reposition’ the
object in the destination space.

SCALING.  Takes any
(x, y ) pair to (x ×sx , y ×sy ).
If sx =sy , this results in a
uniform (i.e. homothetic)
scaling.

tx sx < 1

sy > 1

ty

q

q

q
ROTATION.  Takes any (x, y ) pair
to: � ( x × cosq  + y × sinq,

-x × sinq   + y × cosq)
where q  is the counter-
clockwise rotation angle.

SHEAR (along the x-axis).
Takes any (x, y ) pair to:
  ( x - y × tana,  y)
where a is the clockwise shear
angle relative to the y-axis.

a

Figure 8.  A complex ‘skew’ mapping
(based on both horizontal and vertical
shears) is equivalent to an horizontal shear
followed by the appropriate rotation.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

07

Matrix Product

Let M and M’ be two matrices. No matter their
respective attributes, the product M × M’ always results
in a new matrix. Technically:

a b 0 a' b' 0 aa'+bc' ab'+bd' 0
c d 0 × c' d' 0 = ca'+dc' cb'+dd' 0
e f 1 e' f ' 1 ea'+fc'+e' eb'+fd'+f ' 1

where a, b, c, d, e, f  (resp. a’, b’, c’, d’, e’, f ’ ) are the numeric
attributes of M (resp. M’ ). These complex calculations
are of little interest though. What is important is to
get the meaning of the product: M × M’ reflects the
combination of the two transformations, that is, the
M-transformation followed by the M’-transformation.

For example, suppose that M represents some
scaling and M’ represents some rotation. Then,
M × M’  is the matrix that encodes the global transfor-
mation (scaling, then rotation).

At any level, whenever InDesign applies a transfor-
mation, it simply computes the product of an exist-
ing matrix (map or transformation) by an incoming
matrix. This way, successive transformations applied
to an object—in fact, to its affine map—have not to
be stored by themselves. The map is simply updated as
the result of a matrix product, and its new attributes
represent the whole effect of all transformations it has
undergone from its creation.

No matter how, and how much, you multiply transfor-
mations on an object, the result is always as simple as a
unique transformation, entirely described by six numbers,
which finally encodes the resulting affine map.

However, during the computation, the order of
transformations does matter, as M × M’ is ordinary not

equivalent to M’ × M. It is easy to check visually that
scaling first, then rotating, is not the same as perform-
ing rotation before scaling:

→
Y-SCALING (50%)

→
ROTATION (45°) A

→
ROTATION (45°)

→
Y-SCALING

(50%) B

In other words:
scaling × rotation  ≠  rotation × scaling

This inequality can be generalized to most matrix
products.

InDesign’s Canonical
Transformation Order  (S×H×R×T)

But, as an experienced user, you may have noticed
that the shape A (above) is easier to obtain than the
shape B. Indeed, atomic transformations (transla-
tion, scaling, rotation, and shear) cannot be
applied in an arbitrary order to an object via the gui—
although this could be done through scripting, as we
shall see later.

We must highlight here that every transformation
matrix M can be decomposed as a product of four
atomic matrices, in the following order:

M = S × H × R × T,
where S is a scaling matrix, H a shear matrix, R a
rotation matrix and T a translation matrix (see
the previous page for the related patterns). This canonical
decomposition is unique, and InDesign uses it as an
internal mechanism to link any transformation matrix

to a set of user-friendly attributes in the interface.
Developers will also access those attributes from the
TranformationMatrix object; namely: horizontal and
vertical scale factor (sx, sy), clockwise shear angle (a),
counterclockwise rotation angle (q ), horizontal and
vertical translation (tx, ty).

While this fact is generally overshadowed in the lit-
erature, it is of the utmost importance to understand
the underlying principle before you deal with trans-
formations. Given the matrix values (a, b, c, d, e, f  ),
InDesign automatically resolves and maintains the
correlated s×h×r×t scheme so that one always has the
relation:

a b 0 sx 0 0 1 0 0 cosq -sinq 0 1 0 0
c d 0 = 0 sy 0 × -tana 1 0 × sinq cosq 0 × 0 1 0
e f 1 0 0 1 0 0 1 0 0 1 tx ty 1
M = Scaling shear rotation transL.

This decomposition has many advantages. First, since
the translation is the final term of the product, the
(tx, ty) components are not involved with previous cal-
culations and remains independent, so (e, f) = (tx, ty).
The remaining equation has a pure 2d-linear form:

a b = sx 0 × 1 0 × cosq -sinq
c d 0 sy -tana 1 sinq cosq

Here we can see that the determinant of both the
shear and the rotation matrices is 1 (which reflects the
fact that these transformations preserves the area). So
the determinant of the entire matrix is simply sx × sy
( = a × d – b × c ). This signed value represents the area
scale factor, noting that a negative number indicates
whether the shape is mirrored.

Also, we can distinguish the neutral parameters, viz.
the identity matrix for each term: (sx, sy) = (1, 1) [no
scaling]; a = 0 [no shear]; q = 0 [no rotation].

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

1. Key Concepts 08

A matrix is invertible iff its determinant is not zero,
i. e. sx × sy ≠ 0 —here you see why InDesign does not
allow you to scale anything at 0%! In InDesign, any
(valid) transformation matrix is invertible.

Now, let’s consider a document page item. Its affine
map (M ), in its current state, can be expressed as
M = S × H × R × T (keeping the above notation).
Suppose that the user changes the shear angle from
the Transform panel. What does this mean in terms
of re-mapping?

You could think that some matrix is created, say U,
encoding the shear transformation specified by the user, and
that M is changed to M × U.

That would make perfect sense, but that’s not what
happens. InDesign does not change M to M × U,
because it does not apply any shear matrix to the exist-
ing map! Instead, it only updates the existing shear
component (H ) so that it now reflects the desired
shear angle. In other words, H just becomes H’, and
M therefore becomes S × H’ × R × T. 4

4.	 Of course the six matrix values ( a, b, c, d, tx, ty ) are recalculated
accordingly.

The same thing happens when you change the scaling
of a page item on which a rotation is already applied.
The application doesn’t compute M × Uscaling , it just
changes the map to S’ × H × R × T, where S’ denotes
the new scaling component. This is the reason why
either the order scaling-then-rotation, or rotation-then-
scaling, leads to the same result in the gui (see Figure 9).

Transformation vs. Deformation

Since a transformation in itself only affects an affine
map and does not impact the actual geometry of the
shape, it is relevant for developers to draw a formal dis-
tinction between transforming and deforming an
object. The former only deals with re-mapping coor-
dinates via transformation matrices, the latter regards
actual moves of path points relative to the inner space.

InDesign provides various ways to deform a path, that
is, the geometry of a spline item. In this regard, an
interesting operation is to select a set of path points
using the Direct Selection tool (A) and to “apply a
transformation” of whatever kind. What does happen
under the hood? InDesign does not transform the object

in the sense of updating its affine map. Instead, it
moves the points along the transformation, as shown
in Figure 10b. In this very specific case, although the
system internally performs a transformation on the set
of selected path points, no trace of this operation is
stored in the transformation matrix.

Hierarchical Mapping

As said earlier, every new object along the document
hierarchy—including groups, pages and spreads—has
its own coordinate space bound to the coordinate space
of the parent object via an affine map. Technically,
each of those affine maps is encoded in a single trans-
formation matrix. This is the way all graphic objects
are positioned relative to each other.

→
Y-SCALING (50%)

→
ROTATION (45°)

→
ROTATION (45°)

→
Y-SCALING

(50%)
S×

H×R
’×TS×H×R×T

S×H×R×T S’×H×R×T

S’×
H×R

’×T
Figure 9.
Object transformations specified from
the GUI are order-insensitive, because
at each step InDesign only has to
update a single matrix component
without altering the canonical
decomposition order (S×H×R×T).

Figure 10b.
Manually selecting all path points
with the Direct Selection tool
then changing the Y-scale results
in actually moving the points
“along the transformation.”
This is a DEFORMATION.

Figure 10a.
Changing the Y-scale of the
selected object simply
results in changing the
SCALING component of the
affine map. This is a
TRANSFORMATION.

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

09

Consider the figure below. The device space (in gray)
shows an arrangement of three simple shapes based
on a group (in brown). The matrix is responsible for
mapping the coordinates from the group space to its
parent space.5 Looking in more detail we see that the
group combines two deeper elements, the orange shape
and the green shape. The and matrices are respon-
sible for positioning these respective elements into the
group (their common parent). Dashed lines indicate that
shapes emanate from child elements. Note that the
matrix applies some rotation to the green item, while
the matrix only rescales and translates the orange star
within the group space.

Finally, the green shape has a nested heart shape pasted
into it (the blue item). In terms of coordinate spaces this
dependency is entirely encoded by the matrix, which
maps the blue space into the green space.

An interesting consequence of having those maps
linked in a hierarchical way is that any object only needs
to know how to translate its own coordinate system into
the parent system, no matter what
happens at a higher or deeper
level.

5.	 In fact, the actual parent of the
group is a spread, which itself is mapped to the
pasteboard, which itself is mapped to the device space at some
point. We will discuss later these specific coordinate systems.

Figure 11.
Affine maps (encoded as
transformation matrices) match
the hierarchical organization of
page items. Each matrix is only
responsible for mapping an inner
space to the related parent space.
We may compute matrix products
to express the relationship
between two spaces of any level.
For instance the blue inner space
is connected to the device space
through the product

 ×   ×  .

(x″,y″)

(x ′,y ′)

(x ′,y ′) = (x,y)×

(x″,y″) = (x ′,y ′)× = (x,y)× ×

(X,Y) = (x″,y″)× = (x ′,y ′)× × = (x,y)× × ×

(X,Y)

(x,y)

× ×

1. Key Concepts

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

10

SUMMARY

A 2d coordinate is a pair of numbers (x, y) that locate
a point relative to a given system of axes, origin, and
units—referred to as a coordinate system.

In InDesign every layout component (including pages
and spreads) is bound to its own coordinate system,
also known as its inner coordinate space.

The functional relationship between two coordinate
systems is called an affine map. Any affine map is
determined by a set of six real numbers, conventionally
arranged in a matrix—a transformation matrix.

The way we operate on such matrices might be purely
described in terms of geometrical transformations.
They address “any linear mapping of two-dimensional
coordinates, including translation, scaling, rotation, reflec-
tion, and skewing.” (InDesign SDK)1

InDesign internally reduces any transformation
matrix to a combination of four atomic transforma-
tions: scaling, shear, rotation, and translation,
in that order. This “canonical decomposition” s×h×r×t
is unique and allows to treat separately the underlying
parameters (scaling factors, shear angle, etc.).

1.	 Regarding transformation matrices, InDesign complies with the
rules of the PDF Specification: “A transformation matrix specifies the
relationship between two coordinate spaces. By modifying a transformation
matrix, objects can be scaled, rotated, translated, or transformed in other
ways.” (PDF 32000-1:2008, p. 117.)

When one “applies” a transformation onto an
object—say a rotation—InDesign does not really
modify the geometry of the underlying shape. Instead,
the application updates the affine map that links the
coordinate space of that object to the coordinate space
of its parent. Therefore, what is said a transformed
object is nothing but the same object seen from a dif-
ferent perspective and/or location.

However, under specific circumstances InDesign may
allow to use transformation tools in a way that actually
impacts the inner geometry of the target object, rather
than its affine map. This case will be referred to as a
deformation.2

Affine maps are chained according to the layout hier-
archy. Thanks to this mechanism transformations that
occur at any level may be described in the perspective
of any other coordinate space.

EXERCISES

001.	 Let Obj be a PageItem and (1,2,-1,0,3,1) the
matrix values of its affine map. Express in Obj’s parent
space the coordinate pair of its inner space origin.

002.	 Explain why a shear angle cannot amount to 90°.

003.	 Let G be a Group having two rectangles R1 and R2
as direct children. (None of those page items has been
scaled, skewed, or rotated yet.) Assume that the user

2.	 During a deformation, the transformation parameters have only
a temporary existence.

then selects G and applies a 45° rotation to it. How do
the transformation matrices of G, R1, and R2 now look
like?

004.	 Suppose that the area of some shape, measured
in its inner space, is 8pt². Let (2,3,3,6,-7,5) be the
matrix values of its affine map. What is the shape area
measured in the parent space?

005.	 Let S = (sx,0,0,sy,0,0) be a valid scaling
matrix. What is the inverse of S? [The inverse of a
matrix M is a matrix M' such that M × M' = M' × M =
identity.]

006.	 Can an InDesign user change the location of an
object relative to its parent Spread without changing at
all its affine map?

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

11

Object locations and transformations cannot be understood without a clear

comprehension of InDesign-specific coordinate spaces. This section presents those

fundamental frames to programmers before they fiddle with geometry.

Pasteboard Coordinate Space

At the very top level is the pasteboard coordi-
nate space, a kind of Galilean reference frame. It

is the global, absolute coordinate system that surrounds
the whole document.

The pasteboard1 space encompasses the entire work-
space, including interstitial areas where no object can
be laid out at all. This root entity might be seen as the
virtual parent of every document spread. We will con-
sider it a device space for the on-screen layout. InDesign
uses in fact higher coordinate systems that reflect
how the layout is shown in different views (based on
windows, scrolling, magnification…) but these do not
regard the imageable document.

Any location can be easily and univocally expressed
in the pasteboard coordinate space, whose origin is the
center of the first spread of the document. The x-axis
is horizontal with values increasing from left to right;
the y-axis is vertical with values increasing from up to
bottom (see Figure 12).

1.	 Note that the pasteboard is not represented as an object in the
InDesign Scripting DOM, which may be confusing. The word ‘paste-
board’ commonly denotes the outer region of a page (white back-
ground) which still contains or may contain layout items. In fact, this
extra region would be rather described in terms of spread margins,
because anything that lives there is in the scope of the corresponding
spread and actually belongs to it. Due to this confusion some settings
that regard spreads are referred to as pasteboard things in the DOM.
For example, the PasteboardPreference object (available under
Document and Application) exposes a pasteboardMargins property
(array of two measurement units) which controls the width and the
height of the spread margins. In InDesign CS4, only the height of the
spread margin was addressable, via the minimumSpaceAboveAndBelow
property.

X-AXIS

Y-
AX

IS
SPREAD 0

SPREAD 1

SPREAD 2

PASTEBOARD COORDINATE SPACE

Figure 12. The Pasteboard coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

12

The length along each axis is measured in points and
there is no way to change this. InDesign documents
and all basic coordinate spaces handle measurements
in PostScript points, although both Scripting DOM
and ExtendScript’s core provide tools to convert mea-
surements into other units, as this is done in the appli-
cation GUI.

Since the pasteboard is not an actual DOM object, it
has no parent and therefore no transformation matrix
bound to it—at least, nothing that we could reach
through scripting.2

Given a document, you can refer to the paste-
board coordinate space using the enumerated value
CoordinateSpaces.pasteboardCoordinates in any
method that handles coordinates. We will see later
various uses for this key.

Spread Coordinate Space

“Each spread has its own coordinate space, also known
as the inner coordinate space for a spread. The origin of the
spread coordinate space is the center of the spread. The parent
coordinate space is pasteboard coordinate space.” (InDesign
SDK, see Figure 13.)

A Spread object being known, you can directly refer to
its specific coordinate space using CoordinateSpaces.
spreadCoordinates in every method that handles coor-
dinates. Be aware that the origin of a spread coordinate
space does not coincide with the default zero point in

2.	 It is worth noting, however, that the pasteboard space origin
directly depends on the size and state of the first document spread,
meaning it may move in some circumstances, such as changing the
page size or transforming a spread. Also, facing-pages vs. non-facing-
pages documents follow distinct rules on positioning spreads.

Ruler Per Spread mode. Also, unlike the rulers coordi-
nate system (which we will study later), spread coordi-
nate spaces only support measurements in points.

As a general rule, the transformation matrix of
a spread—read: the affine map that connects this
spread space to the pasteboard space—will specify a

translation in the form:
1 0 0
0 1 0
0 ty 1

where ty represents the offset along the y-axis rela-
tive to the pasteboard space origin. Indeed, although

X-AXIS

Y-
AX

IS

SPREAD 0

SPREAD 1

SPREAD 2

SPREAD COORDINATE SPACE

Figure 13. A typical spread coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

13

spreads are
root containers for
pages and page items, they can
usually be treated from the pasteboard perspective as
simple rectangular regions ordered along the vertical
axis (see Figure 14).

But in InDesign CS4 and later spreads support
transformations, with a few restrictions though. That
is, the affine map of a spread may contain non-default
scaling, shearing and/or rotation parameters.3 As
a basic example let’s apply a 90° Rotated Spread View
on a spread. The pasteboard perspective will then look
like in Figure 15 below.

3.	 The only component that you cannot control is the translation
part. The ( tx , ty ) parameters of a spread matrix entirely depend on
automatic positioning, which in turn depends on respective spread
areas and orientation, facing-pages option, etc.

Such transformation state has of course impor-
tant consequences in terms of object locations and
metrics.

How to get details on rotated views from your scripts?
You need first to retrieve the affine map of the spread,
as follows:

// 01. GET THE AFFINE MAP OF A SPREAD
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var mx = mySpread.transformValuesOf(CS_PARENT)[0];
alert(mx.matrixValues);

The method transformValuesOf(anySpace) returns
a singleton array whose unique element is a matrix that
maps the caller inner space to anySpace. Therefore,
the following code:

ROTATED
SPREAD

VIEW

0 1 0
-1 0 0
0 ty 1

SPREAD 0 SPREAD 1 SPREAD 2

PASTEB
OARD SPACE

Figure 14.
In their default state spreads
are automatically mapped into
the pasteboard space through a
translation matrix, based on the
ty parameter.

ty  = 0 ty  = offset ty  = 2 × offset

Figure 15.
When a “Rotated Spread View” is
applied (from the Pages panel), the
transformation matrix of the
underlying spread space is accordingly
changed to reflect the rotation.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

14

	 anyObj.transformValuesOf(CoordinateSpaces.
parentCoordinates)[0]

always returns the affine map attached to anyObj, as
the enum value CoordinateSpaces.parentCoordinates
points out to the parent coordinate space associated to
anyObj along the hierarchy.4

We store the result, a TransformationMatrix, in the
variable mx so that we can study the underlying com-
ponents. The property mx.matrixValues reveals the
matrix parameters in the form [ a, b, c, d, tx, ty ] (array
of six numbers, keeping the notations used in the pre-
vious chapter.)

From then it’s easy to get the meaning of these data:

Matrix Values Spread Rotation State

[1, 0, 0, 1, 0, ty] Default. (No rotation applied.)

[0, 1,-1, 0, 0, ty] 90° clockwise (CW).

[0,-1, 1, 0, 0, ty] 90° counterclockwise (CCW).

[-1, 0, 0,-1, 0, ty] 180°.

Alternately the TransformationMatrix object exposes
a property, counterclockwiseRotationAngle, which
indicates the CCW rotation angle in degrees.

// 02. DISPLAY THE ROTATION ANGLE OF A SPREAD
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var mx = mySpread.transformValuesOf(CS_PARENT)[0];
alert(mx.counterclockwiseRotationAngle);

4.	 As we are considering a Spread object, CoordinateSpaces.
parentCoordinates is, in fact, equivalent to CoordinateSpaces.
pasteboardCoordinates. The former syntax is just more generic.

Page Coordinate Space

“Each page has its own coordinate space, also known as
the inner coordinate space for a page. The parent coordinate
space for page coordinate space is spread coordinate space.
The origin of page coordinate space is the top-left corner
of the page.” (InDesign SDK, see Figure 16.) A Page
being known, you can refer to its specific space using
CoordinateSpaces.pageCoordinates in CS6 and later.

Here again, note that the origin of a page coordinate
space is in no way determined by the zero point in

Ruler Per Page mode—users can move the zero point
anywhere in the page area. Also, unlike rulers’ coor-
dinate system, a page coordinate space only handles
measurements in points.

As a general rule, the transformation matrix of a
page—read: the affine map that connects this page
space to the parent spread space—will specify a trans-
lation in the form:

1 0 0
0 1 0
tx ty 1

X-AXIS

Y-
AX

IS

SPREAD

PAGE
COORDINATE

SPACE

Figure 16. Typical page coordinate space.

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

15

where tx represents an offset along the x-axis rela-
tive to the spread coordinate space, while ty stands for
some constant y-offset, as illustrated in Figure 17.

Let’s pause for a moment and try to clarify why ty is
a negative offset. A primary reflex is to think that the
translation encoded in should move the page
origin to the spread origin, which would lead to ty > 0.
That’s a misrepresentation of what the translation is.
As said earlier the purpose of the map is to convert
page-relative coordinates into spread-relative coordi-
nates. In particular, applying the map to (0,0)—i. e.,
the origin of the page in its own coordinate space—
must result in a coordinate pair (x0, y0) which positions
that origin in the spread coordinate space. Considering
PAGE 2 in the figure we clearly expect x0 = 0 and y0 < 0.
Let’s apply the affine map:

[ x0, y0, 1 ]  = [ 0, 0, 1 ] ×   = [tx,ty,1 ].
It comes tx = x0 (= 0), and ty = y0 (< 0), so we can express

the rule as follows: The affine map of a page is usually a
simple translation whose (tx, ty ) parameters reflect the
location of the page space origin relative to the parent spread
origin (i.e. the center point of the spread).

Let’s reveal these translation parameters using
Page.transformValuesOf():

// 03.	 DISPLAY THE TRANSLATION VALUES OF
// 		 ALL PAGES HOSTED BY spreads[spdIndex]
const CS = CoordinateSpaces,
 CS_PARENT = CS.parentCoordinates;
var spd = app.activeDocument.spreads[spdIndex],

pgs = spd.pages.everyItem(),
a = [].concat

		 (pgs.transformValuesOf(CS_PARENT))[0],
i = a.length;

while(i--) (a[i]=a[i].matrixValues).splice(0,4);
alert(a.join('\r'));

//	 Typical result for a four-page spread
//	 in facing-pages mode
//	 ---
//		 -1200,-425
//		 -600,-425
//		 0,-425
//		 600,-425

Page Size and Location Issues

Prior to InDesign CS5 pages couldn’t be transformed
at all (that is, page affine maps couldn’t be program-
matically changed). Now Page objects support the
transform() method, meaning that we can alter the
underlying matrix so that a specific page appears trans-
formed within its parent spread.

Page transformation is Pandora’s box. It leads to both
great possibilities and unexpected troubles regarding
page coordinate spaces. First above all, you cannot
assume that page sizes are uniform anymore. Document
settings only specifies a default page size. Using the Page
Tool, the user can change the dimensions of a specific
page and /or its default location. Such effects depend
on document facing-pages options, shuffling behavior
between spreads, layout rules involving master page
inheritance mechanism, and so on.5

5.	 In InDesign CS5 and later, you cannot even be sure that the
origin of a page coordinate space will match the top-left corner of
the corresponding page! It’s easy to break rules playing with the
Page Tool or applying custom transformations to the master-to-page
matrix (Page.masterPageTransform). See next page for an example.

Figure 17.
A typical four-page spread in
its default state. As long as
pages remain untransformed,
their affine map boils down to
a simple (tx,Ty )-translation.
Note that rotating the spread
view (that is, changing the
affine map of the spread
itself) wouldn’t have any
effect on those page-to-
spread matrices (M).

PAGE 0

SPREAD

PAGE 1 PAGE 2 PAGE 3

tx0 < 0

tx2 = 0
tx1 < 0

tx3 > 0

Ty < 0

1 0 0
0 1 0
tx ty 1

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

16

When DocumentPreference.facingPages is turned
off, in particular, pages within a spread can be
freely repositioned along both the x- and the y-axis.
Depending on how this is done the user may shift the
top-left corner of the page relative to the actual origin
of its inner space (see Figure 18).

Another issue should be mentioned. The global pref-
erence app.transformPreferences.whenScaling has a
critical impact on how scaling is performed on graphic
components, including pages:

 → WhenScalingOptions.applyToContent prevents
any scaling operation from being registered as a
transformation. In other words, scaling is treated as a

deformation, meaning that the inner geometry of the
target object is actually resized. In this context, apply-
ing some scaling transformation to a page does not
update the scaling values of its affine map. Instead, the
actual (inner) size of the page will change.6

 → On the contrary, the option WhenScalingOptions.
adjustScalingPercentage forces InDesign to manage
scaling through transformation matrices, so that the
inner geometry of the target is not resized. In other

6.	 By contrast, transforming a spread never results in a deformation.
The printable size of a spread is determined by internal rules, disre-
garding whether that spread is transformed (e.g. scaled) and how it is
rendered in the perspective of the pasteboard coordinate space.

words, scaling a page will not change its actual inner
size. What you see from the spread perspective (“visible
size”) is not what you get on printing or exporting that
page—unless you output the spread itself.

For all these reasons, it is worth considering pages as
just rectangular items—which they actually are, under
the hood—and to compute coordinates for pages as
well as for page items, that is, relative to the parent
spread space or the pasteboard space (depending on
your needs).

As for determining the real size of a page considered
as a device space, best is to use the bounding box coor-
dinate system, as we shall see.

Figure 18.

Sample spread demoing various issues
regarding page location and size.

The actual dimensions of PAGE 0 is
300×200 (inner size) but since its affine
map PageToSpread specifies a 50%
scaling along the x-axis, it appears
reduced to 150×200 in the parent spread.
In addition, a custom transformation
MasterToPage (80% scaling + translation)
is applied to its master page relative to
the page space * before it undergoes the
page-to-spread mapping. The result
becomes pretty difficult to predict!

By contrast PAGE 1 has no scaling applied
(relative to the spread) and its
masterPageTransform matrix is
transparent (identity). However it still
has a custom size (250×250) relative to
the document settings (500×500).

In both cases we can observe that the
origin of each page coordinate space—as
revealed by the translation values of the
respective affine maps—does not
coincide with page’s top-left corner.
A vertical offset (dy=300) appears for
PAGE 0 and an horizontal offset (dx=250)
appears for PAGE 1. So, you cannot blindly
trust the “page coordinate space” system
as defined in Adobe’s documentation.

* From IDML File Format Specification
(version 8.0, page 157):
“Because the master page applied to
each page can be of a different size than
the page, InDesign provides a way to
position the contents of the master page
as they appear on the page. In IDML, this
transformation appears as the
MasterPageTransform attribute on the
<Page> element. While this is a
complete transformation matrix, only
translations are supported.”
The last statement is wrong!
Page.masterPageTransform is
available in InDesign’s DOM from CS5 and
it behaves as a fully customizable matrix.

SPREAD
(-450,-250) (-50,-250)

dy = 300 

dx = 250 

PAGE 0

M
AS

TE
R

M
AS

TE
R

PAGE 1

Origin:	 (–450, –250)
Offset:	 (0, 300)

Inner Size:	 300 × 200
Visible Size:	150 × 200

PageToSpread:	(0.5, 0,0,1, -450,-250)
MasterToPage:	(0.8,0,0,0.8, -70,100)

Default size (document settings): 500×500.

Origin:	 (–50, –250)
Offset:	 (250, 0)

Inner Size:	 250 × 250
Visible Size:	250 × 250

PageToSpread:	(1, 0,0,1, -50,-250)
MasterToPage:	(1,0,0,1,  0,0)

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

17

Finally, remember that the actual parent of any top-
level item is a Spread.7 Thus, there is no rigid connec-
tion between a page and the objects which happen to
stand on it.

Inner Coordinate Space
of a Page Item

Adobe’s documentation does not tell much about
basic PageItem’s inner coordinate space: “Each page item
has its own coordinate space, known as its inner coordinate
space. Each page item has an associated parent coordinate
space (…)” (InDesign SDK.)

Although we already know that any coordinate space
handles measurements in points and that the associ-
ated transformation matrix describes the affine map
that connects the inner coordinate space to the parent
space, a question remains unanswered:

Where exactly is located the origin of a PageItem inner
space relative to its own geometry?

One might intuitively assume that, given a PageItem,
its inner space coincide with either the top-left corner,
or maybe the center point, of some intrinsic bounding
box. Unfortunately this is usually8 not the case!

Let’s set up a new InDesign document having
several empty pages, then draw a basic rectangle on
the last page, using the Rectangle tool. Do not move

7.	 This statement is partially wrong in CS4, where a PageItem could
still belong to a Page. However, even in CS4 the parent coordinate space
of a page-child item is the related spread coordinate space.

8.	 Exceptionally, TextFrame’s inner space has its origin centered in the
frame. But the other PageItem objects do not follow this special rule.

or transform the object, just run the following script:

// 04.	 DISPLAY THE TRANSFORMATION MATRIX OF A
// 		 NEW RECTANGLE *RELATIVE TO THE PASTEBOARD*
const CS = CoordinateSpaces,
 CS_PASTEBOARD = CS.pasteboardCoordinates;
var rec = app.activeDocument.rectangles[0],
 mx = rec.transformValuesOf(CS_PASTEBOARD)[0];
alert(mx.matrixValues);
//	 Result: 1,0,0,1,0,0

The resulting identity matrix means that the rect-
angle inner space origin, once positioned, coincides
with the pasteboard coordinate space origin9
(first-spread’s center point), whatever the
location of the object in the document.

Now if you move the rectangle
using the Selection tool
and re-run the script,
you get another
result in the form
( 1,0,0,1, tx, ty ),
where (tx, ty) are the
translation values relative to the
pasteboard space—that is, the new location of the
inner space origin within the pasteboard space.

Figure 19 illustrates how moving a shape affects matrix
mapping. Let be the affine map of the rectangle
in its original state, the affine map of its parent
spread. The product  ×  (that is, ItemToSpread ×
SpreadToPasteboard ) results in the ItemToPasteboard

9.	 Indeed the (0,0) location in the inner space is mapped onto the
(0,0) location in the pasteboard space.

Figure 19.
Seen in the perspective of the
pasteboard, the inner space
origin of a newly created page
item coincides with the origin
of the pasteboard coordinate
space, whatever the parent
spread and the location of the
object. Then, when some
transformation is applied (e.g. a
TRANSLATION) the affine map is
updated accordingly. Anyway,
note that the “inner geometry”
does not change at all. Page
item’s path points keep the
same location relative to the
inner coordinate space.

PAGEITEM INNER SPACE

Origin

Inner geometry

PASTEB
OARD SPACE

SPREAD

T R A N S L A T I O N

 ×    = (1,0,0,1,0,0)

 ×    = (1,0,0,1, tx,ty)

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

18

matrix, which as we have just observed is the identity
mapping. In short,  ×   = identity. You can check
by yourself that this equality remains true regardless of
the transformation state of the spread at the time you
create the item. From this we can derive an interesting
property: The affine map of a newly created page item is
nothing but the inverse matrix of its parent spread affine
map.

As for  ×   , this product just reflects the transfor-
mation which the page item space globally undergoes
relative to the pasteboard space, i. e. the translation
( 1, 0, 0, 1, tx,ty ) in our example. More generally we have
something of a Chasles’ Relation between transforma-
tion matrices. Let

Mab	be the matrix that maps space A to space B,
Mbc	be the matrix that maps space B to space C,
Mac	be the matrix that maps space A to space C,

then we have Mab × Mbc = Mac .
Figure 20 helps you visualize this rule.

Moving vs. Displacing

When we move a page item using the Selection
tool, or even when we cut-and-paste this object onto
another page, the location of its path points do not
change within the inner coordinate space. That the
reason why we claim that “moving an object” actually
means applying a translation to its affine map—or,
to put it equivalently, altering the translation values
of its affine map.

Therefore, most of the time a move is a transformation.
However, as already observed, some InDesign tools
allow the user to perform a deformation instead of a
transformation.10 In such cases we will rather talk about
a displacement to avoid any confusion with regular
moves processed through translation. See Figure 21a
vs. 21b.

10.	See Chapter 1, Key Concepts: “Transformation vs. Deformation.”

TRANSFORMATION DEFORMATION

NAME Translation
(regular move)

Displacement
(fake move)

HOW-TO
Usual means, e. g.
select and drag the
bounding box
of the page item.

“Direct-select”
path points and
drag them all to
another location.

INNER
GEOMETRY Unchanged. Changed (relative

to the origin).

LOCATION OF
THE ORIGIN

Changed
(relative to the
parent space).

Unchanged.

PASTEB
OARD SPACE

SPREAD

ITEM
 SPACE

 × 

Figure 20.
Chasles’ Relation between the
ItemToSpread matrix  , the
SpreadToPasteboard matrix  ,
and the resulting ItemToPasteboard
matrix  ×  .
It is assumed here that the page
item is a direct child of the spread.
(See figure 11 for a detailed
visualization of matrix products.)

Figure 21b.
Displacing a path, relative
to the inner origin.

Figure 21a.
Moving a page item, the
regular way (TRANSLATION).

2. InDesign Coordinate Spaces

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

19

SUMMARY

InDesign defines several coordinate spaces
relative to which object coordinates are
interpreted and transformations are pro-
cessed. All “InDesign coordinate spaces”

rely on a 2d orthogonal basis listed in clockwise
order and using PostScript point as canonical unit.1

 → The pasteboard coordinate space surrounds
the whole document. Its origin is the center point of the
first spread. It has no affine map (as it represents the top
of the hierarchy). In the Scripting DOM it is referred to
as CoordinateSpaces.pasteboardCoordinates.

 → A spread coordinate space reflects the inner
space for a specific Spread object. Its affine map,
usually a translation, links it to the pasteboard
space. Its origin is the center point of the underly-
ing spread. In the Scripting DOM it is referred to as
CoordinateSpaces.spreadCoordinates.

 → A page coordinate space reflects the inner
space for a specific Page object. Its affine map links it
to the parent spread space. Its origin is, in most cases,
the top-left corner of the page. In the Scripting DOM
it is referred to as CoordinateSpaces.pageCoordinates
in InDesign CS6 and later.2

1.	 Bounding box and rulers coordinate systems are not pure coordi-
nate spaces. Those systems will be discussed in the next chapters.

2.	 Prior to CS6 a page coordinate space has no dedicated enum value
but it already makes sense, as CoordinateSpaces.innerCoordinates,
in the scope of a Page object.

 → Any PageItem has an associated inner coordinate
space, whose affine map is connected to the parent
coordinate space—which can be either a Spread space,
or another PageItem space depending on the docu-
ment hierarchy.3 The inner space origin of a PageItem
usually coincides with the pasteboard origin while the
object is created, then subsequent moves are reflected
in translation components. The TextFrame object is
an exception: its inner origin is originally located at the
center of the bounding box.

 → The Scripting DOM provides a special keyword,
CoordinateSpaces.parentCoordinates, that refers
to the parent coordinate space of any transform-
able object. The code myObject.transformValuesOf
(CoordinateSpaces.parentCoordinates)[0] returns
a TransformationMatrix that describes the affine map
applied to myObject ’s coordinate space.

Depending on InDesign versions, Spread and/or
Page coordinate spaces can be transformed in unex-
pected ways using rotation, scaling, and shear.
Tranformed pages may reveal obscure artifacts: shift of
the default origin location, difference between “inner
size” and “visible size,” etc.

Chasles’ Relation applies to matrix product. Given
three coordinate spaces A, B, and C, if the matrix Mab
maps A to B while the matrix Mbc maps B to C, then
Mab × Mbc maps A to C.

3.	 Fortunately (?) the parent coordinate space of a PageItem space
cannot be a page coordinate space, despite the fact that in CS4
PageItem.parent may refer to a Page. (See also page 17, note 7.)

EXERCISES

001.	 The Scripting DOM exposes an enum we haven’t
discussed yet: CoordinateSpaces.innerCoordinates.
Try to predict its usage and the result of
	 anyObj.transformValuesOf(CoordinateSpaces.

innerCoordinates)[0].matrixValues
where anyObj may refer as well to a Spread, a Page, or
any PageItem in any transformation state.

002.	 Let’s set up a new Document having a single Page
(non-facing mode). In case (a) we draw an Oval at the
center of the page, then we rotate the spread view
90° clockwise. In case (b) we rotate the spread view
90° clockwise, then we draw an Oval at the center of
the page. Are there differences between (a) and (b) in
terms of transformation matrices? Provide a script that
corroborates your answer.

003.	 Using the Selection tool, select the left edge of a
SplineItem’s bounding box and drag it to the left so
that the width of the underlying shape is increased.
Does this change the associated affine map? Provide a
script that corroborates your answer.

004.  A document has a unique Page whose affine map
is (0.5, -0.25, 0.25, 0.5, -125, -125). The containing
Spread has a 180° “rotated view” applied. What is the
transformation matrix of the page coordinate space
relative to the pasteboard coordinate space?

3. Bounding Boxes Secrets

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

20

A bounding box is the smallest rectangle that encloses a geometric page item. *

This definition intuitively corresponds to what we perceive as a selection frame

in the interface. When the user is in drawing a vector shape and switches to the

Selection tool s/he immediately sees a rectangle bordering the entire path. This

sounds dead easy at first sight, but now it’s time to open that black box.

A Bounding Box
Depends on a Coordinate Space

You might think that a given page item has a single,
uniquely determined bounding box. But does it

really make sense to talk about the smallest rectangle
that encloses a shape? Figure 22 shows that we can con-
struct as many enclosing rectangles as desired, depend-
ing on a chosen orientation.

Here is a cleaner definition of a bounding box in
InDesign’s workspace: Given a coordinate space and
given a geometric object, the associated bounding box is
the smallest rectangle that encloses the shape with respect to
the specific axes and orientation of that coordinate space.

 Each coordinate space governs how to frame an
object. Unlike InDesign’s GUI, which always displays
bounding boxes relative to the inner space,1 a script can
select any other reference frame (parent space, spread
space, pasteboard space).

*	 InDesign SDK, “Bounding box and IGeometry.”
1.	 Except when multiple items are selected; in such case InDesign
shows the bounding box aligned with the pasteboard space.

From then we can discern at least four distinct
bounding boxes for the same page item:

 → The inner space relative bounding box (which
we will abbreviate to “inner box” from now on). It is
the enclosing rectangle aligned with the axes of the
inner coordinate space.

 → The parent space relative bounding box (in
short, the “in-parent box”). It is the enclosing rectangle
aligned with the axes of the parent coordinate space.

 → The spread relative bounding box (in short,
the “in-spread box”). It is the enclosing rectangle
aligned with the axes of the spread coordinate space.
Of course the in-spread box is the in-parent box if the
page item has no intermediate owner along the hierar-
chy. Also, if the object we consider is the spread itself,
its in-spread box is de facto its inner box.

 → The pasteboard relative bounding box (in
short, the “in-board box”). It is the enclosing rectan-
gle aligned with the axes of the pasteboard coordinate
space, that is, the horizontal and vertical axes of your
screen. As long as the containing spread is untrans-
formed (no rotated view applied, etc.), the in-board box
of a page item coincides with its in-spread box.

Figure 22.
In the absence of further
instructions there are infinite
ways of enclosing a shape in
a rectangular region. In
InDesign geometry, several
bounding boxes can be
defined for the same object
depending on the coordinate
space we consider.

3. Bounding Boxes Secrets

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

21

In CS6 and later you could also consider the “in-page
box” of an object, that is, the bounding box aligned
with the associated page coordinate space, provided
that the object actually meets a page. In practice it is
discouraged to rely on in-page boxes because of the
many inconsistencies already mentioned about page
coordinate spaces.2

A Bounding Box
Defines a Coordinate System

A bounding box must be understood as an oriented
rectangle in that it defines a system of anchor points
in clockwise order, top-left, top-right, bottom-
right, bottom-left—with respect to the orientation
of the associated coordinate space.

This set of anchor points makes bounding boxes
similar to coordinate spaces although they do not use
the same origin, nor the same units. To avoid any
confusion we shall talk about bounding box coordinate
system, or “box system.”3

Box systems use the top-left anchor as the origin.
The distance from the top-left anchor to the top-right
anchor provides the horizontal unit, while the distance
from the top-left anchor to the bottom-left anchor
provides the vertical unit. It follows in particular that

2.	 The best you can do is to handle the inner box of a given page
(that is, its own bounding box relative to its inner space) then to
resolve associated anchor points into spread or pasteboard coordi-
nates. Considering page bounding box is helpful when you have to
fix page size and/or location issues (see previous chapter, page 15).

3.	 Adobe’s documentation may refer as well to “bounds space,”
keeping in mind that such coordinate system is not strictly a coordi-
nate space. (Coordinate spaces are discussed in Chapter 2.)

the center anchor point of the bounding box has the
coordinates (0.5,0.5) whatever the actual dimensions
of the enclosing rectangle (see Figure 23). Using this
system—or dedicated enumerators—a script can easily
specify any anchor point location. It can also access to
other relative locations, such as (0.25,0.75), (-1,0),
(2,3) etc. Note that box systems allow to define loca-
tions outside the bounding box.

While a given shape has different bounding boxes
(one for each connected space) and then different
bounds coordinate systems, an interesting property is
that the location of the center anchor point remains
invariant.

Path Bounds vs. Visible Bounds

A bounding box may or may not fit the path stroke
or other border effects that affect the visible bounds of
a page item, such as rounded corners.

InDesign’s GUI always renders visible-bounds-
dependent bounding boxes, which the Scripting DOM
refers to as outerStrokeBounds4 or visibleBounds, in
contrast with the inherent path bounds, referred to as
geometricPathBounds4 or geometricBounds.

At the scripting level one can always refer to either
the “path box” or the “visible box,” meaning that two
box systems are actually available for any spline item
we consider. Selecting the right system is of primary
importance when moving or resizing objects within a
specific region of your layout.

4.	 Those two values are exposed by the BoundingBoxLimits enu-
meration, which plays an important role in the resolve method, as
we shall see later.

In-Parent Box

Inner Box seen in

the parent space

INNER SPACE

PARENT SPACE

Inner Box

TOP-LEFT

1

1

TOP-RIGHT

BOTTOM-LEFT BOTTOM-RIGHT

(0.5, 0.5)

(0.5, 0.5)

Figure 23.
Inner box (blue) and in-parent box (green) of a page item. Seen in its
associated coordinate space a bounding box is always rectangular and
oriented as the space basis. However these properties may be lost if the
box is observed in the perspective of another space (as shown below).

3. Bounding Boxes Secrets

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

22

The figure below (see Figure 24) shows that a visible
box can be larger, or narrower, than its corresponding
path box. As an immediate consequence the associ-
ated coordinate systems do not match. For instance,
the path box system origin (blue point) is not at the
same location as the visible box system origin (magenta
point.)5

However, relative to some coordinate space, the path
box and the visible box of an object always have the
same orientation. Therefore we could describe the
relationship between these two systems by a transfor-
mation matrix that only involves, in the worst case,
scaling and translation components.

Also, since Spread and Page objects never undergo
stroke effects, their inner path6 and visible boxes are
always identical.

5.	 We can even show that the visible box and the path box do not
necessarily share the same center point (0.5,0.5):

6.	 In fact, talking about “path” boxes is something of a misnomer for
spreads and pages, as those objects are not spline items at all.

SUMMARY

Given a coordinate space S and an object O
being either a page item, a page, or a spread, the

visible bounding box of O relative to S is the smallest
rectangle in S that encloses O with respect to S’s basis.

In addition, the path bounding box of O relative to S is
the smallest rectangle in S that encloses the path of O
(disregarding stroke effects) with respect to S’s basis.

Each bounding box determines a coordinate system
(not a coordinate space) having its top-left anchor point
as the origin, the basis being defined by the top-left to
to top-right vector (x-axis) and the top-left to bottom-
left vector (y-axis.)

EXERCISES

001.	 Let T be an equilateral triangle having some side
aligned with the bottom line of the associated path
box. Express the location of the geometric center of T
in the inner path box system.

002.	 Suppose that InDesign’s GUI displays the bound-
ing box of a page item as a non-rectangular frame.
Explain why this frame is anyway a parallelogram.
Show that the transformation matrix which maps the
inner space of that page item to the pasteboard space
necessarily contains some shear component.

003.	 Can the path box and the inner box of a spline
item coincide—in any given space—if this object has
a nonzero outer stroke weight?

STROKE WEIGHT

PATH BOX

VISIBLE BOX

PATH BOX

VISIBLE BOX

ROUNDED CORNERS

Figure 24.
Depending on applied stroke effetcs the visible box (magenta) can be
larger or smaller than the path box (blue.) In the top figure the
triangle has a solid border (outer stroke) that increases its visible box.
In the bottom figure rounded corners have been applied to the
triangle, so that the visible box is smaller than the path box.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

23

Many technical details had to be discussed in the previous chapters but our

efforts will be rewarded! We can now tackle the very first practical questions

that arise in terms of InDesign geometry: how to specify or identify a location

in a document. This seemingly simple problem requires, once again, a bit of

meticulousness.

What is a Location?

Basically a location is nothing but a coordinate pair
relative to some coordinate system, as detailed in

Chapter 1. In practice, however, the question takes
place in a slightly different perspective. The program-
mer has often in mind a certain location regardless of
any coordinate (for example the top-left corner of a
rectangle, the center of a page, or some PathPoint in a
path) and what s/he actually needs is to express or access
that location with respect to some coordinate system
or any other convention. One may need to:

 → Identify that location before further processing,
e. g. for the purpose of analyzing the geometry of a
spline item.

 → Compare that location with another one while
solving questions like “Where is this object relative to
that one?”

 → Use that location as a temporary origin during a
transformation, for instance when scaling or rotating
objects around a point. And so on.

Thus, a location is much more than a simple pair of
numbers. Better is to understand it as a determined

somewhere in the layout, based on existing objects and
processed through coordinates when it finally comes
to calculate or compare numeric positions.

In that sense a same location obviously has various
expressions, since InDesign provides several coor-
dinate spaces and systems. Thus, two distinct (x, y)
pairs may describe the same destination point in the
device space. For example—see Figure 25—the origin
of a balanced spread is (0, 0) in its associated coordi-
nate space, but the same location is described as well
by the coordinates (0.5, 0.5) in the inner box system1
of that spread.

Ultimately the entire problem is to provide the
Scripting DOM with an exact specification of the
locations you consider and, when needed, to perform
the appropriate from/to conversion between coordi-
nates. Our first task is therefore to explore the avail-
able methods for specifying a location in InDesign.

1.	 Indeed, the center point of the spread area is (0.5,0.5) in
bounding box coordinates and it usually coincides with the origin
of the spread coordinate space. This statement might be wrong in
non-balanced spreads though, because the facing-page mode may
impact the location of the coordinate space origin.

SPREAD

(0, 0)

SPREAD

(0.5, 0.5)

TOP-LEFT TOP-RIGHT

BOTTOM-LEFT BOTTOM-RIGHT

Figure 25.
A same location (red cross at the center of the spread) can be expressed
by different coordinates depending on the system we consider,
  (0, 0)	 in the spread coordinate space (top),
  (0.5,0.5)	 (i.e. centerAnchor) in the spread bounding box system (bottom).

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

24

Location Specifiers

InDesign’s subsystem offers exactly three distinct
ways to define a location. In the sdk2 these are referred
to as transform-space location, bounds-space loca-
tion, and ruler-space location. In this chapter we will
abbreviate them respectively T-specifier, B-specifier,
and R-specifier.

 → transform-space location (t-specifier) is the
easiest case. It defines a location relative to a coordinate
space. So, given a coordinate space and a coordinate
pair (x, y), this method simply allows to target the point
[x, y] in that space, for example the point [0, 0] in the
pasteboard space, or the point [3, -2] in the parent
space of a page item, etc. (Details on InDesign coordi-
nate spaces are discussed in Chapter 2.)

 → bounds-space location (b-specifier) is probably
the most practical case. It defines a location relative to
a bounding box coordinate system (see Chapter 3.) This
specifier is very powerful as it integrates the features
attached to any bounding box, (a) the related coordi-
nate space, (b) whether the path box or the visible box is
under consideration, (c) the ability to supply coordinates

2.	 My main source here is the LocationSpace structure and the
TransformOrigin class defined in the header file TransformTypes.h
(InDesign sdk.) As often, source code and developers’ comments
are our best hints to investigate obscure topics. Adobe also released
in 2007 a pdf “Working With Transformations in Javascript”
(InDesign CS3 Scripting) that brought additional clues on how loca-
tion specifiers are ported from the subsystem API into the Scripting
DOM. (In that particular field the basic scripting reference, as well as
the estk help, are useless.)

either as numeric pairs (u, v)3, e.g. [0.5, 1], or as pre-
defined anchors, e.g. bottom-center-anchor. For example,
given an oval (or any spline item,) a B-specifier will
allow to target the top-left corner of the bounding box
seen in the perspective of the parent space and includ-
ing the stroke weight of the object.

 → ruler-space location (r-specifier) finally
defines a location with respect to the current rulers and
preferences in the GUI. This takes into account the active
measurement units, the custom “zero point” and the
option RulerOrigin (page vs. spread vs. spine origin)
exposed in the ViewPreference object. As this special
coordinate system hasn’t been explored yet, we shall
study it in more detail soon. Basically, a r-specifier

3.	 To prevent confusions between the unit length in coordinate
spaces (that is, PostScript point) and the special one used in bounding
box systems, we conventionally use the variables (x, y) in the former
case vs. (u, v) in the latter case.

involves coordinates (rx , ry ) in ruler units and relative to
the zero point—as seen in the Transform panel—but
it also involves either a spread or a page specification,
since rulers are spread- or page-dependent.

The table below (Figure 26) summarizes for each loca-
tion specifier the parameters we have mentioned so far.

It is worth noting that the SDK makes no distinc-
tion between a “transform space” and a regular coordi-
nate space, reminding us that transformations only occur
through these primary spaces. The additional coordinate
systems (bounding boxes and rulers) are just helpers in
relation with the root mechanism.

LOCATION SPECIFIER COORDINATE SYSTEM COORDINATES RELATED DOM OBJECTS OPTIONS

T-SPECIFIER
(transform-

space)
Coordinate space. Any [x, y] pair.

The Spread, Page, or PageItem that
determines the coordinate space
(note: the pasteboard space can be
reached from any DOM object.)

B-SPECIFIER
(bounds-space) Bounding box.

Any [u, v] pair or,
alternately, any
predefined anchor
point.

The Spread, Page, or PageItem whose
bounding box is considered (with
respect to the options below.)

• The coordinate space
which the box is framed in.
• The box limits (visible
vs. path bounds.)

R-SPECIFIER
(ruler-space) The GUI rulers.

Any [rx, ry] pair
in current ruler
units (optionally
in points.)

The Spread or Page which the rulers
are attached to (according to the
RulerOrigin preference.) In fact
this parameter is implied from a
child PageItem and other arguments
(either a page index or an
additional location specifier.)

• Ability to provide
[rx, ry] in points instead
of ruler units
(consideringRulerUnits
flag.)

Figure 26.
There are three distinct ways of defining a location
in InDesign. The first (T-Specifier) simply relies on
regular coordinate spaces. The second (B-Specifier)
makes use of bounding box coordinates. The last
(R-Specifier) involves the rulers with respect to
their current state and settings.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

25

Syntax of a Location in ExtendScript

InDesign’s scripting layer provides a few places where
a location is expected as a formal argument,4

 → obj.resolve(location, space, usingRulerUnits)
 → obj.transform(space, originLocation, ...)
 → obj.resize(space, originLocation, ...)

where obj refers to a Spread, a Page, or a PageItem.
The official documentation defines this parameter

(location or originLocation) as follows: “The location
requested. Can accept: Array of 2 Reals, AnchorPoint enu-
merator or Array of Arrays of 2 Reals, CoordinateSpaces enu-
merators, AnchorPoint enumerators, BoundingBoxLimits
enumerators or Long Integers.”

If you don’t understand this gibberish, keep calm,
this is normal reaction! The Scripting DOM supports
all location specifiers but the expected syntax is so
polymorphic that no developer can decipher it without
further explanation.

4.	 We could also mention geometricBounds and visibleBounds,
as well as Path.entirePath and PathPoint’s positioning properties
(anchor, leftDirection, rightDirection), but those locations have a
limited syntax which, unfortunately, only supports the ruler system.

Here is (finally revealed!) the complete syntax:

1. Location as a T-Specifier
1. 1	 [ x, y ]
	 Coordinates in the pasteboard space.
1. 2	 [ [x, y], <COORD_SPACE> ]
	 Coordinates in the specified coordinate space.
2. Location as a B-Specifier
2. 1	 <ANCHOR_PT>
	 AnchorPoint in the visible inner box system.
2. 2a	[ <ANCHOR_PT>, <BOX_LIMITS> ]
	 AnchorPoint in the inner box system,

	 considering the specified BoundingBoxLimits.
2. 2b	[ [u, v], <BOX_LIMITS> ]
	 Coordinates in the inner box system,

	 considering the specified BoundingBoxLimits.
2. 3a	[ <ANCHOR_PT>, <BOX_LIMITS>, <COORD_SPACE> ]
	 AnchorPoint in the bounding box system

	 framed in the specified coordinate space and
	 considering the specified BoundingBoxLimits.
2. 3b	[ [u, v], <BOX_LIMITS>, <COORD_SPACE> ]
	 Coordinates in the bounding box system

	 framed in the specified coordinate space and
	 considering the specified BoundingBoxLimits.

3. Location as a R-Specifier
3. 1	 [ [rx, ry], <PAGE_INDEX> ]
	 • Coordinates in the ruler system attached to the

	 Page specified by PAGE_INDEX (index in the parent
	 spread) in case RulerOrigin is pageOrigin.5
	 • Otherwise, coordinates in the spread- or spine-
	 based ruler system, PAGE_INDEX having no effect.6
3. 2	 [ [rx, ry], <PAGE_LOCATION> ]
	 Coordinates7 in the ruler system attached to the

	 Page that contains PAGE_LOCATION (in case
	 RulerOrigin is pageOrigin.) PAGE_LOCATION
	 is formatted as a B-specifier using any of the
	 2.x syntaxes, without the outer brackets.8

5.	 The coordinates [rx, ry] depend on the “zero point” and are
interpreted in ruler units if usingRulerUnits==true. Note also that if
RulerOrigin.spineOrigin is active, the “zero point” has a fixed loca-
tion which the user cannot change.

6.	 However, the <PAGE_INDEX> parameter is still required to comply
with the 3.1 syntax! In such case you can use 0 as a fake index.

7.	 Here again the coordinates are interpreted in ruler units (resp. in
points) if usingRulerUnits==true (resp. false.)

8.	 For example, here is a 3.2 specifier in the form [[rx,ry], 2.2b] ,
	 [ [10,20], [0.5, 1], BoundingBoxLimits.geometricPathBounds ].

myObj.resolve( location , space , usingRulerUnits )
DOM OBJECT
The spread, page, or
page item relative to
which the location is
to be processed.

Attached spaces
and bounding boxes.

LOCATION SPECIFIER
The location to consider
(T-, B- or R-Specifier)
expressed using one of the
below formats ( 1.1 to 3.2 ).

RULER UNITS FLAG  (true or false)
Whether location is supplied
in ruler units in case of a
R-Specifier. Has no effect
otherwise.

DESTINATION SPACE  The coordinate space
which the location is to be converted into.

Figure 27.
All layout objects (incl. spreads and
pages) expose a resolve() method
which plays a crucial role in solving
location issues. It takes a location
specifier of any kind (with respect to
the incoming object) and returns a
singleton array having for unique
element a coordinate pair [ x, y ]
expressed in the destination space.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

26

Understanding resolve()

The resolve() method (see Figure 27) is a good
starting point for experimenting location specifiers.
You can use it to study and convert locations from
any kind into T-Specifier coordinates.

In most cases you will call resolve() from a
PageItem, but it is also available in Graphic, Spread
and Page APIs.9 The “calling object” is of course
very important since it brings the source from which
coordinate spaces or bounding boxes are referred to.
For example
	 mySpread.resolve(AnchorPoint.topLeftAnchor,

CoordinateSpaces.parentCoordinates)[0]
targets the top-left location of mySpread ’s inner
box (syntax 2.1) and returns the coordinates in
mySpread ’s parent space (that is, in the pasteboard
space.)

By contrast,
	 myOval.resolve(AnchorPoint.topLeftAnchor,

CoordinateSpaces.parentCoordinates)[0]
targets the top-left location of myOval ’s inner box
(bounding box of the object in its own space) and
returns the coordinates in myOval ’s parent space—
which might be either the spread space or the coor-
dinate space of a PageItem in case myOval belongs
to a Group or is nested into another container.

Hence the caller fully governs the meaning of the
parameters, as shown in Figure 28.

Despite its high flexibility regarding inputs, the
main limitation of obj.resolve(...) is that it can
only output pure transform-space coordinates.

9.	 Page.resolve() has been added in InDesign CS4 (6.0.)

mySpread

TOP-LEFT

TOP-LE
FT

myOval

parentGroup

myTriangle

Pasteboard
space

ova
l sp

ace

group
space

triangle space

SP
RE

AD
 0

SP
RE

AD
 1

x1

x2

y2

y1

SP
RE

AD
 2

Figure 28. In this layout various
transformations have been applied
to the underlying coordinate spaces
(oval, triangle, and parent group),
and their origins have been
randomly positioned to make it clear
that they don’t necessarily coincide.

1. The location is specified as the
top-left anchor of mySpread inner
box using the syntax
mySpread.resolve(ANCHOR_PT, ...)
This location is returned in the
parent space (pasteboard) if
CoordinateSpaces.parentCoordinates
is provided as second argument.
The result is [[ x1, y1 ]].

2. The location is specified
the same way as the top-left anchor
of myOval  inner box:
myOval.resolve(ANCHOR_PT, ...)
But since myOval  belongs to a group
(parentGroup) the parent space
CoordinateSpaces.parentCoordinates
here refers to the coordinate space
associated to the group.
The result is [[ x2, y2 ]].

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

4. Resolving Locations 27

So if you need to convert say a B-Specifier into a
R-Specifier (or into another B-specifier based on a
distinct coordinate space), some extra calculations are
required.

In such case the magic workaround would be:
1. Select a coordinate space as a reference, e.g. the

pasteboard space or a common spread space.
2. Translate the input specifier inLoc into reference

space coordinates (x, y) using the scheme
xy = obj.resolve(inLoc, refSpace...)[0].
3. Find the output specifier outLoc that would also

translate into (x, y). That is, find outLoc such that
xy = obj.resolve(outLoc, refSpace...)[0].
You can then conclude that outLoc targets the same

location than inLoc, which is what you were looking
after.

Problem is that step 3 is not as easy as it sounds! At
this stage the known variable is xy (array [x,y]) and the
unknown is outLoc, so we want to use the resolve()
command backwards. Let’s study this problem.

Resolving Locations: The “T2B” Case10

Consider a T-Specifier in whatever coordinate space.
Its most general form11 is [ [x, y], refSpace ], relative
to some layout object myObj. Our goal is to convert
this location into a B-Specifier, that is, into a coordi-
nate pair [u, v] relative to one of the bounding boxes
attached to myObj. (That’s the T2B conversion case.)

10.	t2b abbreviates “T-Specifier to B-Specifier” conversion.

11.	 The particular case [ x, y ] (syntax 1.1) is just a shortcut of [ [ x, y ],
CoordinateSpaces.pasteboardCoordinates ] (syntax 1.2.)

Again, the most general form of the B-Specifier is
[ [u, v], boxLimits, boxSpace ] (syntax 2.3b) since any
other syntax is a shortcut where either default boxSpace
and/or default boxLimits are implied. Also, every pre-
defined anchor point has a direct expression as a coor-
dinate pair [u, v] in the range [0..1, 0..1].

The whole question is therefore to implement a func-
tion that takes myObj, [x, y], refSpace, boxLimits, and
boxSpace, then outputs [u, v].

For instance, focusing on the location represented by
the red cross in Figure 29, we could have to handle the
following input parameters,
myObj	 The blue oval (child of a group)
[X, Y]	 The red cross coordinates in refSpace
refSpace	 CoordinateSpaces.spreadCoordinates
boxLimits	 BoundingBoxLimits.outerStrokeBounds
boxSpace	 CoordinateSpaces.innerCoordinates,

then to compute and return [u, v] i. e. the coordinates
of the red cross relative to the visible inner box of the oval
(blue frame.)12

In short, here are the coordinates we already have:

X

Y

and here are those we are looking for:
u

v

In terms of transformation mapping we are to deter-
mine a matrix M such that (u, v) = (X, Y ) × M.

Two important facts will help us. First, InDesign
can easily get the matrix that maps boxSpace (the inner

12.	Note the distinction between refSpace, the coordinate space in
which (x, y) is provided, and boxSpace, the coordinate space that
determines the bounding box of interest. Setting boxSpace as refSpace
(spread) would lead to compute (u, v) relative to the orange frame
instead. See Chapter 3 for more detail on bounding boxes.

mySpread

Figure 29.
The best strategy for solving location issues is to suppose all coordinate spaces are in a
nontrivial transform state relative to each other along the hierarchy. This way one can
discern parameters and relationships that would otherwise be coincident and unnoticeable.
In this layout both the oval, the triangle and the parent group have distinct rotation or
shear applied, and even the spread container is assumed skewed in the pasteboard space.

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

4. Resolving Locations 28

coordinate space of the oval) to refSpace (the spread
coordinate space, in our example.) This boxToRefMx
matrix is given by:13

  boxToRefMx = myObj.transformValuesOf(refSpace)[0];
The second important fact it that a bounding box

system, although not being a coordinate space, always
has the same orientation than the underlying coordi-
nate space, meaning that neigher rotation nor shear
component is involved in the matrix that maps the
box space to the box system.14 In other words, there is a
scaling matrix S and a translation matrix T such that

(1)	 (u, v) = (x, y) × S × T,
where (x, y) refer to coordinates in the box space, (u, v)
being the corresponding coordinates in the box system.

 → Let (tx, ty) be the T parameters and (sx, sy) be the
scaling factors of S. We can then rephrase (1) as follows:

(1a)	 u = x . sx + tx ,
(1b)	 v = y . sy + ty .

 → Let tl be the top-left anchor of the box. We have
(2a)	 uTL =  0  =  xTL . sx + tx ,� according to (1a)
(2b)	 vTL =  0  =  yTL . sy + ty ,� according to (1b)

where (xTL , yTL ) are easily determined using myObj.
resolve(<TOP_LEFT_LOC>, boxSpace)[0].

 → Let br be the bottom-right anchor of the box.
We have

(3a)	 uBR =  1  =  xBR . sx + tx ,� according to (1a)
(3b)	 vBR =  1  =  yBR . sy + ty ,� according to (1b)

13.	 Indeed, we learned in Chapter 2 that the command myObj.
transformValuesOf(anySpace) returns a singleton array whose
unique element is a matrix that maps myObj ’s inner space to anySpace.

14.	This fact was stated in Chapter 3. More generaly, any coordinate
system can be seen as the transformation of a regular coordinate space.
The proof is left as an exercise for the reader.

where (xBR , yBR ) are easily determined using myObj.
resolve(<BOTTOM_RIGHT_LOC>, boxSpace)[0].

The system of equations results in
(4)  sx =  1 / ( xBR – xTL )  ,  sy =  1 / ( yBR – yTL ) ,
(5)  tx =  – sx . xTL  ,  ty =  – sy . yTL ,

so S and T matrices are now fully determined.

Let’s put together the data we have reached so far (see
Figure 30.) The known matrix boxToRefMx maps the
box space to the reference space. Using the notations
above this translates into

(6)	 ( X, Y  )  =  ( x, y ) × boxToRefMx.
The known matrix S × T, i.e. ( sx , 0, 0 , sy , tx , ty ), maps
the box space to the box system, that is,

(7)	 ( u, v )  =  ( x, y ) × S × T.
And we are looking for a matrix M that satisfies

(8)	 ( u, v )  =  ( X, Y  ) × M.
Using equalities (7) and (6) one can rewrite (8) as

follows:
	 ( x, y ) × S × T = ( x, y ) × boxToRefMx × M,

which must remain true whatever ( x , y ). It follows:
(9)	 S × T  =  boxToRefMx × M.

Since every valid transformation in InDesign is
invertible, we can set a matrix refToBoxMx as the
inverse of boxToRefMx, using the code15

	 refToBoxMx = boxToRefMx.invertMatrix();
Now by pre-multiplying each term of the equality (9)
by refToBoxMx, it comes

(10)	 refToBoxMx × S × T  =  M
as refToBoxMx × boxToRefMx is the identity matrix.

I detailed the whole demonstration in order to high-
light what to do in terms of scripting commands, but
the fact that M is equal to refToBoxMx × S × T was
quite obvious from the Chasles’ Relation perspective.16
Indeed,

refToBoxMx maps the ref-space A to the box-space B,
S × T  maps the box-space b to the box-system C, and
M  maps the ref-space A to the box-system C,

so the identity simply results from Mab × Mbc = Mac.

15.	 If you compare a matrix with a path that carries one coordinate
space to another, inverting a matrix is just like reverting that path.

16.	See Chapter 1 for details on matrix product ; see Chapter 2 (in
particular, Figure 20) for details on Chasles’ Relation.

refSpace
( X , Y ) ( x , y )

boxSpace
( u , v )

boxSystem

refToBox

boxToRef

SCALING × TRANSLATION

Figure 30.
What InDesign can instantly reveal us
(through transformValuesOf) is the matrix
boxToRef which maps an inner space
(boxSpace) to any coordinate space
(refSpace.) In order to find the matrix M that
maps refSpace to a bounding box system
(boxSystem) we need extra calculations.
First we determine the scaling-and-
translation matrix S × T that maps boxSpace
to boxSystem. Then, by inverting boxToRef,
we get a matrix refToBox that maps
refSpace to boxSpace. Finally, Chasles’
Relation shows that M = refToBox × S × T.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

29

Refining the “T2B” Algorithm

If you read in depth the previous Section, you may
have noticed that we (deliberately!) neglected an
important option. At the very beginning of the dis-
cussion we assumed that boxSpace (the bounding box
space under consideration) was the inner space of
the object. This was the case in our example, which
made easy to determine the boxToRef matrix using
myObj.transformValuesOf(refSpace). The method
transformValuesOf() is indeed designed to take the
inner space, and only this one, as its input space, so it
always returns an inner-to-any transformation matrix.

But in the most general case, we may have to convert
refSpace coordinates into any of the available box
systems, related to either inner, parent, page, spread, or
pasteboard space. Therefore, if boxSpace does not refer
to the inner space, an intermediate matrix is required
for properly mapping the whole transformation, as
shown in Figure 31.

It is easy to see that our previous refToBox matrix
must now be decomposed refToInner × innerToBox,
where refToInner maps refSpace to the inner space,
while innerToBox maps the inner space to boxSpace.17

Implementation Notes. — The code of the function
resolveToBoxSys() (see next page) faithfully translates
into ExtendScript the algorithm we have discussed.

The required arguments are obj, refSpace and XY
(the input object and a coordinate pair in the refer-
ence space.) The parameters boxLimits and boxSpace
are made optional, default values being set respec-
tively to BoundingBoxLimits.outerStrokeBounds and
CoordinateSpaces.innerCoordinates, so the function
returns [u, v] relative to the visible inner box if other
parameters are not explicitly provided.

17.	 In case boxSpace == innerSpace, the expected innerToBox
matrix would be of course the identity matrix. Which is ensured
by the fact that myObj.transformValuesOf(CoordinateSpaces.
innerCoordinates)[0] always returns the identity (1,0,0,1,0,0).

The method resolve() is invoked twice in order to
convert the desired locations (top-left and bottom-right
anchors, formatted as full B-Specifiers) into boxSpace
coordinates. This allows to determine the scaling and
translation parameters sx, sy, tx, ty.

The last piece of code chains up all matrix opera-
tions to avoid the creation of temporary references.
The TransformationMatrix api provides all we need
for that purpose,

 → M.invertMatrix() returns the inverse of M,
 → M1.catenateMatrix(M2) returns the product

M1 × M2,
 → M.scaleMatrix(sx, sy) returns the product M × S

where S  is the scaling matrix (sx,0,0,sy,0,0),
 → M.translateMatrix(tx, ty) returns the product

M × T where T  is the translation (1,0,0,1,tx,ty),
 → M.changeCoordinates([x,y]) applies the matrix

to (x, y)18 and returns the final coordinate pair.

18.	That is, in terms of matrix product, [ x  y  0 ] × M.

refSpace
( X , Y ) ( x' , y' )

boxSpace
( x , y )

innerSpace
( u , v )

boxSystem

innerToBoxrefToInner

boxToInnerinnerToRef

SCALING × TRANSLATION

Figure 31.
Improved version of the “T2B” algorithm. It is
not assumed anymore that the desired box
space matches the inner space. In other words
the bounding box can be observed from a
different perspective, e.g. the pasteboard space.
The whole transformation ( M ) now involves the
following matrices: refToInner (the inverse of
innerToRef), innerToBox (inner space to
boxSpace mapping), and S × T as previously
calculated (boxSpace to boxSystem mapping.)
Matrices with purple background are those to
which transformValuesOf() gives access.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

30

What will make the T2B algorithm an essential
brick among your scripting tools is that no native DOM
method returns B-Specifiers while bounding boxes
are probably the most natural entities for dealing with
locations. Alas, the built-in resolve() method only
takes b-specifiers as inputs. We now have a round
trip bridge between t-specifiers and b-specifiers.

The function below (Figure 32) will help you answer
questions like, Where is this coordinate space location rela-
tive to that bounding box? Does this (x , y) point “belong” to
the box area of that spline item? And so on.19

This algorithm also brings a general pattern that one
can re-use in similar problems. All is about “chaining”
matrices in a consistent way from the input space to the
output space (see the return statement.)

Note that the coordinates XY are processed only at
the very last line. If we remove that line (and then the
XY argument), the function will return the T2B matrix
itself, which can be stored in a variable for the purpose
of calling changeCoordinates() at different locations.
Keep this trick in mind if you plan to embed the algo-
rithm as a module in a wider project.

InDesign’s Ruler System

Before we go further in processing R-Specifiers we
need additional hints on how rulers work in InDesign.
Unlike the coordinate spaces and the bounding box
systems—which are context-independent and there-
fore very secure from a scripting standpoint—the ruler

19.	 Also, (u, v) coordinates have a clear “meaning.” We know
(0.5, 0.5) is the center point of the box and we can easily visualize
locations like (0.25, 0.5) or (1/4, 2/3) even if they don’t match the
predefined set of anchor points.

// 05. T2B ALGORITHM
const resolveToBoxSys = function(obj, refSpace, XY, boxLimits, boxSpace)
// ---
// Converts refSpace coordinates, XY, into box system coordinates [u,v].
// ---
// obj :: a DOM object that supports resolve (PageItem,Graphic,Spread...)
// refSpace :: a coordinate space, e.g Coordinate Spaces.spreadCoordinates,
// XY :: coordinates in refSpace (array of two numbers), e.g [3,5],
// boxLimits :: [OPT] a BoundingBoxLimits enum, default: .outerStrokeBounds,
// boxSpace :: [OPT] coordinate space of the box, default: .innerCoordinates.
{
	 // Defaults
	 // ---
	 boxLimits || (boxLimits = BoundingBoxLimits.outerStrokeBounds);
	 boxSpace || (boxSpace = CoordinateSpaces.innerCoordinates);

	 // Scaling and translation params (boxSpace -> boxSystem)
	 // ---
	 var xyTL = obj.resolve([[0,0],boxLimits,boxSpace],boxSpace)[0],
		 xyBR = obj.resolve([[1,1],boxLimits,boxSpace],boxSpace)[0],
		 sx = 1/(xyBR[0]-xyTL[0]),
		 sy = 1/(xyBR[1]-xyTL[1]),
		 tx = -sx*xyTL[0],
		 ty = -sy*xyTL[1];

	 // Get the result.
	 // ---
	 return obj.
		 transformValuesOf(refSpace)[0].invertMatrix(). // REF -> INNER
		 catenateMatrix(obj.transformValuesOf(boxSpace)[0]). // INNER -> BOX
		 scaleMatrix(sx,sy).translateMatrix(tx,ty). // BOX -> SYS
		 changeCoordinates(XY); // (X,Y) => (u,v)
};

Figure 32. Implementation
of the T2B algorithm. This
function can translate any
T-Specifier into the
B-Specifier of your choice.
Given a coordinate pair
[ X, Y ] in whatever
coordinate space (refSpace),
it returns the same location
expressed as a coordinate
pair [ u, v ] in the bounding
box system associated to
boxLimits and boxSpace.

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

31

system depends on preferences and user choices. In a
perfect world script developers would prefer to guard
against user whims. Unfortunately the Scripting DOM
is deeply stuck to the rulers. Most basic properties
and methods—such as PageItem.geometricBounds,
PageItem.move(), PathPoint.anchor, and many
others—involve the ruler system. Also, the Transform
panel and related components display ruler-related
coordinates and dimensions.

As long as you control document settings, measure-
ment units, view preferences, and provided that no
special transformation occurs in the layout, ruler coor-
dinates remain reliable and easy to use.20 But if you are
automating tasks related to complex geometry, nested
splines, IDML processing or similar stuff, a key rule
is to address coordinates and transformations in the
most agnostic way. Always assume the user is working
in a rotated spread view, uses custom units and plays
with skewed objects throughout non-uniformly resized
pages, as in Figure 33!

Let’s enumerate the parameters that make the ruler
system so special:

 → Unlike coordinate spaces it supports custom units,
namely ViewPreference.horizontalMeasurementUnits
and ViewPreference.verticalMeasurementUnits.21

20.	The overwhelming majority of available InDesign scripts relie
on the ruler system. Hence, they properly work under some implicit
assumptions about InDesign settings that could be easily broken in
odd environments. Understanding this issue is the key for strength-
ening your scripts and making them useable at a larger scale.

21.	 In InDesign CS5 and later, the object ScriptPreference pro-
vides a property measurementUnit that allows to bypass GUI units
and use those specified. (ViewPreference also offers useful additional
properties: strokeMeasurementUnits, typographicMeasurementUnits,
textSizeMeasurementUnits, etc.)

 → As a consequence, the rulers involve horizontal
and vertical directions regardless of the transform state
of the spread under consideration. For example, if a
spread is 90° CW rotated, the horizontal ruler (which
carries X coordinates in the corresponding units) will
in fact match the orientation of the Y-axis in the spread
coordinate space! So, in terms of orientation, the ruler
system seems rigidly attached to the pasteboard space. But
even this rule may become wrong, as we shall see.

 → InDesign rulers support a user defined origin
“specified as page coordinates in the format [x, y]” via the
property Document.zeroPoint. Adobe’s documentation
lacks exactness and accuracy on what the term “page
coordinates” is supposed to refer to, since there is no
apparent relationship between rulers’ orientation and
the transform state of the pages (see again Figure 33.)

 → In fact, the default origin location of the ruler
system depends on ViewPreference.rulerOrigin,

Figure 33. � Screenshot of InDesign’s viewport under wild settings
(custom spread rotation, skewed page, custom units,
randomly positioned Zero Point…) Problem now is to
properly use ruler coordinates for parsing and processing
locations, bounds, width, height of the blue rectangle!

HORIZONTAL RULER

VE
RT

IC
AL

 R
UL

ER

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

32

which opens three options:22

RulerOrigin Default Origin Location Base

pageOrigin

• In non facing-page layout,
top-left corner of (the inner
box of) each page.
• Otherwise, top-left corner of
the in-spread box of each page.

PAGE

spreadOrigin Top-left corner of the in-spread
box area of all pages (Fig. 34b.) SPREAD

spineOrigin
(locked)

• In facing-page layout, top-
left corner of the in-spread box
of the leftmost right-sided
page.
• Otherwise, top-left corner
of the in-spread box of the
leftmost page.

SPREAD

Note that whatever the RulerOrigin option, the
default location of the origin (the default zero point)
coincides with the top-left corner of a certain bound-
ing box. Should the pages undergo unusual transfor-
mations, that location remains fully determined.

The pageOrigin case is highly counterintuitive—
especially when DocumentPreference.facingPages is
turned off. Here the inner bounding box of the page
determines the actual horizontal and vertical axes of the
system—even though the GUI tells you another story!

22.	For the record, here is how the scripting reference describes these
options. RulerOrigin.pageOrigin: “the top-left corner of each page is
a new zero point on the horizontal ruler.”  RulerOrigin.spineOrigin,
“the zero point is at the top-left corner of the leftmost page and at the
top of the binding spine. The horizontal ruler measures from the left-most
page to the binding edge, and from the binding spine through the right
edge of the right-most page. Also locks the zero point and prevents manual
overrides.”  RulerOrigin.spreadOrigin, “the zero point is at the top-left
corner of the spread and the ruler increments continuously across all pages
of the spread.”

In all other cases, the in-spread bounding box of the
page23 is considered, and axes are oriented as the paste-
board space. Figure 34 shows these distinct systems.

 → Finally, the [x, y] coordinates of the Document.
zeroPoint property allows to reset24 the origin rela-
tive to the default zero point, with respect to both the
custom units and the horizontal and vertical orienta-
tions of the rulers. This results in what we may call a
ruler system.25

Details About Page-Based Ruler Systems

The pageOrigin mode (Figure 34a) is undoubtedly
the most complex. Each page then has a dedicated
ruler system (while single ruler system is assigned to
the whole spread in spineOrigin and spreadOrigin
modes.) Also, in non facing-page layouts, the actual
orientation of the page rulers fits the inner space of the
pages, although InDesign still displays “horizontal”

23.	You may assume that there is no interesting distinction between
the inner box and the in-spread box a a page. Most of the time, they
just coincide. But they differ if the page undergoes e.g. a rotation or a
skew relative to the spread. Then the top-left corner of the page (inner
box) does not coincide with the top-left corner of the rectangle that
encloses the page in the spread perspective (in-spread box.)

24.	In spineOrigin mode, changing Document.zeroPoint has no effect
on the current ruler origin. But the property is actually modified.

25.	As discussed in Chapter 1, a coordinate system is entirely speci-
fied by a location (origin), two axes, and a unit length along each axis.

SPREAD

PASTEBOARD

SPREAD

Default Origin

Default
Origin

Zero
Point

Zero
Point

Zero Point
Default Origin

Default Origin

Zero
Point

Zero Point
(locked)

LEFTMOSTRIGHT-SIDED PAGE

IN
-S

PR
EA

D
BO

X

IN
-S

PR
EA

D
BO

X

PAGE 0
PAGE 2

PAGE 1

RIGHT SIDE

LEFT SIDE

34a  Page Origin Ruler Systems
(in non facing-page context.)

34b  Spread Origin Ruler System.

34c  Spine Origin Ruler System
(in facing-page context.)

Figure 34. � The ruler system in different modes.
a. Page Origin (in non-facing page layout),
b. Spread Origin,
c. Spine Origin (in facing-page layout.)

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

33

and “vertical” rulers aligned with
the document window! Thus the
coordinates visible in the Transform
panel may become quite obscure
under various conditions.

In addition, a single location in the
spread can be expressed by different
ruler coordinates: one for each page!
A script can identify a point on the
first page using the ruler system of
the third page. Conversely, when
you retrieve PathPoint coordinates
from a spline that overlaps mul-
tiple pages, the specific page which
rulers are currently based on must
be known.26

Any R-Specifier (ruler-space loca-
tion) expects either a determined
Page, or at least a determined Spread. In the latter case
the spread under consideration is clearly known, since
every dom method is triggered from an object which
has a definite, implied parent spread.

On the contrary, page-based ruler systems require
the page under consideration to be identified within the
implied spread. This explains the weird thoroughness
of R-Specifier’s formats, as already detailed:
3. 1	 [ [rx, ry], <PAGE_INDEX> ],
3. 2	 [ [rx, ry], <PAGE_LOCATION> ].
The first syntax (3.1) speaks for itself and will do

the trick in almost every case. If a spread-based ruler

26.	This problem becomes critical when a script needs to supply ruler
coordinates (as mostly expected by DOM entities and methods) while
pageOrigin is selected. In absolute, a (rx, ry) pair has no meaning as
long as the target page is unknown!

system is active, <PAGE_INDEX> is nothing but a formal
placeholder, so any index number (say 0) can be passed
in. Otherwise, <PAGE_INDEX> is of course the index of
the page in the spread.

The syntax 3.2 is much more sophisticated. Here
InDesign expects a parameter, <PAGE_LOCATION>,
formatted as a B-Specifier without outer brackets,
e.g. AnchorPoint.bottomLeftAnchor or [0.75, 0.5],
BoundingBoxLimits.geometricPathBounds. Relative to
the source object, this B-specifier points out to a loca-
tion, which in turn determines a page. Which page?
The nearest from the given location! And finally, the
[rx,ry] coordinates are interpreted in the specific ruler
system of that page.

To make this more concrete, consider the skewed
rectangle in Figure 35 and study the following bounding

box locations: bottom-right corner of the
visible inner box,   bottom-right corner
of the geometric inner box,   bottom-right
corner of the visible in-spread box.27

Then, still assuming that the active ruler
mode is pageOrigin, let’s choose a coordinate
pair ( rx , ry ). So far we don’t know whether
( rx , ry ) should refer to the red cross (page P0)
or to the purple cross (page P1.)

Consider the following R-Specifiers:
— [ [rx,ry],   ],
— [ [rx,ry],   ],
— [ [rx,ry],   ].
Although the exact same numbers are

involved in terms of ruler coordinates, the
resulting locations are respectively:
— the purple cross in cases and  ,
— the red cross in case .

Indeed, and implicitly refer to P1 as it is the
nearest page: belongs to it, is closer to P1’ s left
edge than to P0’ s
right edge. By con-
trast refers to P0
since the corner is
now a bit closer to
P0’ s right edge, as
shown below.

27.	 These B-Specifiers can be expressed as follows,
	 AP.bottomRightAnchor,
 	AP.bottomRightAnchor, BL.geometricPathBounds
	 AP.bottomRightAnchor, BL.outerStrokeBounds, CS.spreadCoordinates

using the abbreviations AP = AnchorPoints, BL = BoundingBoxLimits,
and CS = CoordinateSpaces.

SPREAD
P0

(rx,ry)

(rx,ry)

P1

P0
 E
DG
E

P1
 E
DG
E

Figure 35.  Page ruler coordinates and
locations accessed from R-Specifiers.
(See explanations in the text.)

4. Resolving Locations

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

34

SUMMARY

InDesign’s scripting dom provides three distinct ways
of specifying locations in transform-wise methods.

A transform-space location is relative to
a regular coordinate space. Its complete speci-

fier looks like [ [x, y], <SPACE> ]. For example,
[ [0, 0], CoordinateSpaces.spreadCoordinates ]
refers to the origin of the spread space. A shorter form,
[x, y] alone, implicitly relates to the pasteboard space.

A bounds-space location determines a position
relative to a bounding box system. The complete

specifier looks like [ [u, v], <BOX_LIMITS>, <SPACE> ]
where [u, v]=[0,0] represents the top-left anchor
and [u, v]=[1,1] the bottom-right anchor. Usual
AnchorPoint enumerators can be used rather than
( u, v ) coordinates. <BOX_LIMITS> stands for a
BoundingBoxLimits enumerator. If specified, <SPACE>
indicates the coordinate space of the box, otherwise the
inner box system is considered. Shorter forms are avail-
able. In particular, a simple AnchorPoint enumerator
abbreviates [<ANCHOR_PT>, BoundingBoxLimits.outer
StrokeBounds, CoordinateSpaces.innerCoordinates].

A ruler-space location is relative to the current
GUI rulers and user preferences (namely the

custom zeroPoint and the rulerOrigin option.) The
usual specifier looks like [ [rx, ry], <PAGE_INDEX> ],
where the ruler coordinates ( rx , ry ) may be interpreted
either in points (default), or in custom ruler units if
the parameter usingRulerUnits is set to true in the
invoked method.

The resolve() method allows to convert any specified
location into coordinates within a regular coordinate
space. <OBJ>.resolve( <LOCATION>, <SPACE>) returns
a singleton array28 whose unique element is the desired
coordinate pair (array of two numbers) expressed in
the <SPACE> system. <OBJ> can be any DOM object
that supports transformations: Spread, Page, Group,
Graphic, and of course any SplineItem.

There is no direct way to resolve a location into
bounds-space or ruler-space coordinates. We pro-
vided an algorithm for converting Transform-space
coordinates into bounding box coordinates (see page 30.)

EXERCISES

001.  Let G be a Group formed of three circles (Oval
objects.) Keeping in mind that G might undergo some
rotation as well as other transformations, write a script
that checks whether the centers of the circles are
aligned. Constraint : use bounds-space locations.

002.  Given a multi-spread document, how
would you calculate the vertical distance—in the
pasteboard— between two given pages?

28.	resolve() does not exactly work as we would expect on plural
elements accessed through everyItem(). For example, myGroup.
pageItems.everyItem().resolve(...) returns a singleton array
whose unique element is an array of n coordinates, n being the number
of page items. Fine! These coordinates are correct as long as they rely
on a location explicitly attached to the inner space. But if the parent
space is involved, all coordinates will be identical, as emanating from
the group itself . A typical example is AnchorPoint.centerAnchor,
which (wrongly?) relates to the center point of the group. A work-
around is to use the full specifier syntax (in the inner space.)

003.  Suppose a facing-page document contains five
pages within a single spread. What are the ( x, y ) coor-
dinates, expressed in spreadCoordinates space, of the
upper left corner of each Page? What are the ( u, v )
coordinates, in the spread box system, of the exact
center point of each Page?

004.  Let a bitmap Image X belong to a Rectangle R
(assumed without stroke weight or rounded corner.)
Both X and R may undergo independent transfor-
mations of any kind, including rotation and/or shear.
Provide a code that checks whether X ’s area is entirely
enclosed 29 in R.

005.  Compute the perimeter of any Polygon from its
path points, whatever its transform state. (Your script
must return the length, in points, as perceived in the paste-
board, without altering user preferences, measurement units
or other ruler settings.)

29.	 For an advanced discussion on this topic, see http://indiscripts.
com/post/2016/12/indesign-scripting-forum-roundup-10#hd2sb1

OK KO

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

35

Chapter 1 told you all needed about affine maps, transformations and matrix

product. Then we studied coordinate spaces and locations, the (many) bounding

boxes available and those tricky ruler coordinates. Yet we still don’t know

how the Scripting DOM actually performs a transformation. It’s time to act!

The “Transform Space” Enigma

Really, it took me years to clear up the transform(…)
method. Not because the process of transforming is

obscure (after all, we only need to compute matrices),
but because of the very first argument of the func-
tion: “the coordinate space to use.” Seriously, why should
I specify a coordinate space since I already know which
object map needs to be processed? Isn’t it obvious that
calling myObj.transform(…) just means, “Hey, take a
transformation matrix and blend it with the affine map
of myObj” ?

Think about it for a few seconds. Say you have
a Rectangle somewhere in a document. Maybe it
belongs to a complex group, maybe it contains chil-
dren itself, and maybe all this stuff already undergoes
a slew of nested transformations (rotations, scaling, at
your pleasure!) Anyway if our goal is to apply a new
transformation—say, scaling—to that rectangle, this
specifically concerns its affine map, that is, the rela-
tionship between its inner coordinate space and its
parent space. This ultimately amounts to changing the
existing attributes by asking InDesign to calculate a
matrix product. So, again, why may we supply another
coordinate space?

The answer is more exciting than the question. While
the scenario just limned is almost correct, InDesign
gives you more power than you suspected.

Figure 36 represents the inital state of our rectangular
source object, in blue. Parent and spread spaces are pic-
tured as well, assuming the parent object (a green oval)
belongs to a spread. As usual we note M the affine
map of the source object (i.e, the inner-to-parent
matrix), P the parent-to-spread matrix, and S the
spread-to-pasteboard matrix.

As you can see M contains rotation attributes and
P adds a bit of scaling. As a result our rectangle looks
slightly skewed in the perspective of the spread space.
Indeed M × P (the inner-to-spread matrix) puts end-
to-end rotation and scaling components, which
typically introduces a shear angle.

Now let’s consider the transformation T we want
to apply, e.g a 60% horizontal scaling specified by
[0.6 , 0 , 0 , 1, 0, 0]. Before any calculation it is easy to
imagine how changing the source object from its inner
space would impact the shape in higher spaces:

INNER SPACE PARENT SPACE SPREAD SPACE

= (x,y)×

= (x,y)×  

= (x,y)×    (X,Y)

(x,y)

(x',y')

(x" ,y")

SPREAD SPACE

to the PASTEBOARD

PARENT SPACE

INNER SPACE

AFFINE
MAP

Incoming transformationmatrix

Figure 36.
The affine map of the source
object is necessarily the target
of the transformation to be
processed. Question: how will
these two matrices interact?

source
object

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

36

This looks familiar to us because InDesign’s gui
exactly reacts as just pictured when the user rescales
or resizes an object. However, we know it technically
wrong to represent the transformation in the inner
space, since the inner space never transforms itself. So
we rather use the expression “from the inner space,”
evoking that the matrix T has to be somehow sand-
wiched between the inner-to-inner matrix (the iden-
tity I ) and the affine map M. Every simple transform
stage works this way. Applying T from the inner coordi-
nate space results in turning the affine map M into

M’  =  I × T × M,

which of course reduces to T × M since I has no effect.
Hence, transforming any source from its inner space
amounts to inserting T before M in terms of matrix
product (see Figure 37), and we finally conclude that
T undergoes1 the transformation M. This paradoxical
sounding result is better understood if we break down
the process in two stages: T applies to I first, then the
result goes through M to get the affine map updated.

Now you might prefer to transform the very same
source object from its parent space, which then leads to:

M’  =  M × T.

1.	 As already discussed in Chapter 1 (page 4, note 1), the meaning
of “applying A to B” is a matter of pure convention, provided that the
author maintains a consistent paradigm throughout his presentation.
In this document, “A applies to B” (or “B undergoes A ”) corresponds
to the product B × A (the applied matrix being the right operand.)
Since, in general, B × A ≠ A × B, it is important to clearly distinguish
“applying A to B” from “applying B to A.”

As shown in Figure 38 this makes a huge difference.
Indeed, the 60% horizontal scaling now seems to alter
the shape from the perspective of its parent space. We
could represent this as follows:

Note that the whole process leads anyway to chang-
ing the affine map M into M × T, while the affine map
of the parent (P) remains unchanged. So, transforming
A from A ’s parent space is not the same as transform-
ing the parent of A (say B) from B ’s inner space.
Compare Figure 39a vs. 39b to see the difference.

The rule is, what-
ever the parameters
you send to myObj.
transform(...), the
target matrix which
actually changes is
always the affine map
M attached to myObj,
the source object.

So far we have detailed
two transform schemes:

 → From the inner space result is T × M .
 → From the parent space result is M × T.

But what is the general scheme? For example, what
does it mean to apply T to myObj from the spread space?
First we need to find the matrix that maps the inner
geometry up to the spread space, that is, M × P in our
example. T should operate at this point (on P ), but we
know that M × P × T  is not a valid result in terms of
affine map, since it’s not an inner-to-parent matrix.
So we have to go back from the spread to the parent

A

B

A
B

Figure 39a.  Object A
(the child) has
undergone the
transformation “from
its parent space.”

Figure 39b.  Object B
(the parent) has
undergone the
transformation “from
its (own) inner space.”

source
object

BEFORE AFTER

source
object

source
object

BEFORE AFTER

source
object

Figure 37.  Applied from
the inner space, the
matrix  (60%
horizontal scaling) acts
between the identity
matrix and the affine
map of the source object.
As a result, the original
matrix is changed
into  ×  .

Figure 38.  Applied from
the parent space, the
matrix  (60%
horizontal scaling) now
directly acts on the affine
map of the source
object. It is then changed
into  ×  .

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

37

space using the inverse matrix of P, noted P -1. Finally,

M’  =  M × P × T × P -1.

The trick is, write the affine map in a form that brings
up the target space, then apply T at this point:

 → Inner scheme:	 M =  I  × M	 ->	 M’ = I ×T × M = T×M
 → Parent scheme:	 M = M	 ->	 M’ = M×T
 → Spread scheme2:	M = M × P × P -1	 ->	 M’ = M × P×T × P -1

etc.

This machinery, although a bit technical, provides
a universal way to handle in mathematical terms the
process behind the transform method. Now if you are
not comfortable with matrix algebra, don’t panic! You
still have the option to get the picture from a more
intuitive approach: just visualize the source object in
the target space and imagine the transformation T as
taking place in that frame. This allows you to easily see
the result—although this does not detail how the affine
map is actually changing.3

In conclusion, the meaning and the purpose of
myObj.transform(space, ..., T) is to apply T in the
perspective of space, keeping in mind that the end result
of this operation is updating myObj ’s affine map accord-
ingly. The unique object that myObj.tranform(...)
truly alters is the inner-to-parent matrix.

2.	 Remembering that P × P -1 = I (the identity matrix.)

3.	 Luckily, we developers are rarely confronted with the numerical
side of transformations. InDesign does the job for us and we can at
any time retrieve the transform state of any source object relative to
any coordinate space, using myObj.transformValuesOf(space)[0].

Transformation Origin

According to Adobe’s documentation the transform
method expects three mandatory arguments (plus two
optional arguments we shall investigate soon.)

 → First, the “coordinate space to use.” It would be
better said, as just discussed, the perspective space of
the transformation.

 → Secondly, the “temporary origin during the transfor-
mation,” which happens to be a location specifier in
the terms of the previous chapter.

 → Then, the “transform matrix” itself (T), supplied
as either a pure TransformationMatrix instance, or
a simple Array of six numbers reflecting the matrix
attributes.4

Here again, let’s be candid about the temporary origin.
Why are we supposed to provide such argument? Can’t
any matrix deal with the origin of the perspective space?

Technically, the answer is a disappointing “no.” In
itself a transformation matrix has no origin, it just encap-
sulates numbers that act on coordinates. The origin
relative to which these coordinates make sense is not
governed by the matrix, it intrinsically belongs to the
coordinate space under consideration when the trans-
formation is performed.

We are then facing an apparent limitation.
What if I want to apply a 60% horizontal scaling
[0.6, 0, 0, 1, 0, 0], or some rotation, with respect
to an arbitrary center Ω ? Playing with the translation
attributes (i.e, the two last numbers of the matrix) will
not help, because translation comes into action at
the very end of the process.

4.	 Review Chapter 1 to resfresh your memory on this topic.

So, given a target space S, a transformation T and
a location Ω which is not the origin of S, our goal
is to make as if Ω were temporarily the origin of S
while applying T. To solve this problem, let’s pretend
that T occurs in a virtual space S' defined as a pure
copy of S centered in Ω. The coordinates of Ω in
S, (xΩ, yΩ), become (0, 0) in S'. In other words, the
matrix that maps S to S' is T–Ω =[1, 0, 0, 1, –xΩ, –yΩ]
and, reciprocally, the matrix that maps S' back to S is
T+Ω = [1, 0, 0, 1, xΩ, yΩ].

Now we can lucidly grasp the concept of temporary
origin, and how it works (see Fig. 40.) Instead of just
applying T from the perspective space S, InDesign

BEFORE AFTER

T–Ω T+Ω

SPACE S

SPACE S’

SPACE S

SPACE S’

Figure 40.  Applying a transformation in the perspective of the
space S and using as temporary origin is equivalent to processing

 in a virtual space S' centered on . This involves two reciprocal
translations T–Ω and T+Ω. Finally, in the perspective of the space S,
the actual matrix in use, although implied, is T–Ω ×   × T+Ω.

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

38

applies in fact the transformation T–Ω ×T × T+Ω which
makes Ω the apparent origin of the coordinate space
during the transformation.

And this unstated back and forth translation is per-
formed behind the scenes, thanks to the second argu-
ment of the transform method. It is both very con-
venient and very powerful. On one hand, it avoids
explicitly computing and supplying the transitory
matrices. Also, it offers the full syntax of any loca-
tion specifier, so Ω can be expressed in bounds-space
coordinates or in the ruler system, as well as in a regular
coordinate space.

This also makes clear the last optional argument,
usingRulerUnits. It obviously refers to a “ruler based
origin” (and has effect in such case only,) giving the
option to interpret coordinates “using ruler units rather
than points.” (See Chapter 4 for further detail on ruler
based locations.)

Matrix Content Flags

To avoid confusing the reader we have until now sup-
ported a basic assumption, that the transformation T  is
necessarily applied in terms of matrix product, meaning

that the outgoing affine map, M’, should always result
from compounding existing matrices with T.  The most
general form we found to sum up the process is

M’ = inner-to-space × T ×  space-to-parent
     TRANSFORMATION         REMAPPING   

where space refers to either the inner space itself (giving
M’ = T × M ), the parent space (giving M’ = M × T ), or
any available space in the hierarchy.5

Let’s write T  in its canonical form s×h×r×t where
the submatrices represent, respectively, the scaling,
shear, rotation, and translation components
of T. 6 In the same way the inner-to-space matrix,
which is the target of T , can be decomposed s·×h· ×r· ×t· .
So far we assumed that the transformation calculus
was invariably consisting of processing:

s·×h· ×r· ×t·  ×  s×h×r×t.

5.	 We now know that these formulas are exact modulo the round-trip
translations taking into account the temporary origin. But this point
does not alter the formalization of the subject.

6.	 On the canonical transformation order in InDesign—S×H×R×T—
see Chapter 1, page 7.

This amounts to fully mixing the components of
the existing matrix with those of the transformation
matrix. But the scripting dom is more permissive than
we thought! You can decide to simply replace some
components—say s· and r· —by those specified in the
transformation matrix. Then we get

s×h· ×r×t· ,
s· and r· being purely abandoned, h and t being purely
ignored. Regarding the transformation itself (before
remapping the result to the parent space) scaling and
rotation components are now forcibly set to those
specified in T, while shear and translation com-
ponents do not undergo any impact from T.

The fourth parameter of the transform method
(denoted replacing in Fig. 41) controls this special use.

 → If replacing is missing, undefined, or an empty
Array, the function behaves in default, full mix mode
(s·×h· ×r· ×t· × s×h×r×t.)

 → If replacing has one or several MatrixContent
enumerator(s)7, it determines which component(s)
from s×h×r×t will replace those in s·×h· ×r· ×t· .

7.	 Namely, MatrixContent.scaleValues for S, .shearValue for H,
.rotationValue for R, and .translationValues for T.

Figure 41.
Summary of the
parameters involved in the
transform method.

myObj.transform( space, origin, T, replacing, usingRulerUnits )
DOM OBJECT
The source object
(the one whose
affine map is to be
actually modified.)

Attached spaces
and bounding boxes.

LOCATION SPECIFIER
The temporary origin
of the transformation
(a location that will
pretend to be (0,0)
during the process.)

MATRIX CONTENT ENUMERATOR(S)
Tells whether (and which) transformation
components have to replace existing
ones, instead of being compounded.

OPTIONAL OPTIONAL

RULER UNITS FLAG  (true or false)
Whether origin is supplied
in ruler units in case of a R-Specifier.
(Has no effect otherwise.)

COORDINATE SPACE
The perspective space
of the transformation
(where T seems
to operate.)

TRANSFORMATION MATRIX
(or array of six attributes.)

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

39

If used, the replacing argument can be either a single
MatrixContent enum, or an Array of MatrixContent
enums (in no particular order.) InDesign even gives
you the option to redefine all matrix components by
passing in the array
	 [
	 MatrixContent.scaleValues,
	 MatrixContent.shearValue,
	 MatrixContent.rotationValue,
	 MatrixContent.translationValues
].
All transformation attributes of the source object (in
the perspective space) will then be reset to those sup-
plied in T. 8

As a concrete example, here is an explicit implemen-
tation of the clearTransformations method (which
resets s·, h· , r·  attributes relative to the pasteboard space):

// 06. CLEAR TRANSFORMS (IN PASTEBOARD PERSP.)
var CS_PB = CoordinateSpaces.pasteboardCoordinates;
var ORIGIN = AnchorPoint.centerAnchor;
var T = [1, 0, 0, 1, 0, 0];
var MC = MatrixContent;
var MC_SHR = [MC.scaleValues, MC.shearValue,

MC.rotationValue];
myObj.transform(CS_PB, ORIGIN, T, MC_SHR);

8.	 Note, however, that clearing the translation component is
tricky and rarely desired, since the (tx, ty) attributes remain somewhat
arbitrary in InDesign spaces. Two objects may be at the same loca-
tion in the layout while being translated differently in terms of affine
map. It suffices that the positioning of internal path points (the inner
geometry) compensates the translation effect. Thus, redefining (tx, ty)
is generally a bad idea, and MatrixContent.translationValues is of
little use in practice.

The above code is—obviously!—more complex than
myObj.clearTransformations() , but it opens options
not available in the built-in method.

For example, we could now clear transformations rela-
tive to the parent (not the pasteboard) space: just specify
the perspective CoordinateSpaces.parentCoordinates
rather than CoordinateSpaces.spreadCoordinates.
The process will then readjust the inner-to-parent
relationship while leaving higher level transforma-
tions untouched (parent-to-pasteboard.) See, in
Figure 42, case A vs. case B.

Transform Preferences

The property app.transformPreferences controls a
TransformPreference object of great importance when
you are playing with transformations.

First and foremost, note that this preference set is
Application scoped, which makes it persistent across
InDesign sessions until the user, or a script, changes
it. You cannot safely assign custom transform prefer-
ences to a specific Document: you need to check the
state of affairs at the application level whenever you call
transform() or similar methods.

By good fortune most TransformPreference members
are harmless, for they only affect display behaviors. The
boolean properties dimensionsIncludeStrokeWeight,
showContentOffset, and transformationsAreTotals
are of that kind. They just tell how Transformation and
Control panels expose metric information (width and
height, ruler coordinates, transformation attributes.)

A

B

Figure 42.
A.  Clearing the transformations of the child
object (blue frame) relative to the
pasteboard resets all matrix components—
except translation—so that the shape looks
‘untransformed’ in the pasteboard space.

B.  By contrast, clearing transformations
relative to the parent (green shape) only
resets matrix components in the
perspective of the parent space. The child
still undergoes the effects (scaling,
rotation) that specifically affect the parent.

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

40

Here is a short summary of the TransformPreference
properties as documented by Adobe:

Property (Type) Description

dimensionsIncludeStrokeWeight
(Boolean)

If true, “includes the stroke
weight when displaying
object dimensions.”
If false, “measures objects
from the path or frame.”

showContentOffset
(Boolean)

If true, “measures the x and y
values of the object relative
to the containing frame.”
If false, “measures the x and
y values relative to the
rulers.”

transformationsAreTotals
(Boolean)

If true, “transform values
are relative to the parent
object.”
If false, “transform values
are absolute values.”

whenScaling
(WhenScalingOptions)

->� applyToContent

->� adjustScalingPercentage

“The method used to scale a
page item.”

“Apply scaling to the item's
content.”

“Adjust the scaling percentage
of the item's transform.”

adjustStrokeWeightWhenScaling
(Boolean)

“If true, strokes are scaled
when objects are scaled.”

adjustEffectsWhenScaling
(Boolean)

(Available from InDesign CC.)
“If true, transparency
effects are scaled when
objects are scaled.”

Thanks to the General Preferences dialog (Figure 43)
we know that the boolean properties adjustStroke​
WeightWhenScaling and adjustEffectsWhenScaling9
only make sense if whenScaling is set to When​Scaling​
Options.applyToContent.

9.	 Effect adjustment was not available before InDesign CC.

As you might guess, this special setting
(“Apply to Content”) has a deep impact
on transformation matrix processing.
In short, it tells InDesign to turn any
scaling transformation into a defor-
mation.10 That is, while the transform
method operates, the source object is
not scaled in transform matrix terms,
it is purely resized (in terms of its inner
geometry.)

For example—still assuming “Apply to
Content” active—the code
	 myRectangle.transform(space, origin,

[2,0,0,1,0,0])
will no longer apply a 200% horizontal scaling to the
related matrix in the perspective space, it will actually
change the underlying path points of myRectangle to
get, visually, the same result. So, all happens as if a
200% scaling were applied, but the existing affine map
remains unaltered.

In these circumstances, it may be desirable to adjust
stroke weight and/or transparency effects accordingly,
or to keep their original magnitude as it is.11 This
explains why the checkboxes “Include Stroke Weight”
and “Include Effects” specifically regard the option
“Apply to Content.”

There is one exception to the rule: no matter the
value of TransformPreference.whenScaling, Spread

10.	On the distinction between transformation and deformation, see
Chapter 1, page 8.

11.	 Such options would be pointless in the “Adjust Scaling Percentage”
case, because an actual transformation necessarily affects strokes and
effects, as it does with everything in the scope of the coordinate
space.

transformations never come out into deformations.
Any scaled spread is and remains a scaled spread (that’s
a crucial difference between Spread and Page objects.)
The following snippet proves our affirmation:

// 07. SPREAD SCALING TEST
app.transformPreferences.whenScaling =

WhenScalingOptions.applyToContent;
var mySpread = app.activeDocument.spreads[0];
// Rescale mySpread by (200%,50%)
mySpread.transform(CoordinateSpaces.

pasteboardCoordinates, [0,0], [2,0,0,.5,0,0]);
alert(mySpread.transformValuesOf(CoordinateSpaces.

pasteboardCoordinates)[0].matrixValues);
	 // => 2, 0, 0, 0.5, 0, 0

scaling factors are still visible in the final matrix
despite the value assigned to whenScaling. Now if you
run the same test on a Page object, the end matrix
looks like [1,0,0,1,tx,ty], meaning that during the
deformation of the page bounds, the affine map did
not change.

Figure 43.
InDesign users go into Preferences >
General… > Object Editing to take
control of the most important option
regarding scaling: “Apply to Content”
vs. “Adjust Scaling Percentage.” The
Scripting DOM reflects this option in
TransformPreference.whenScaling.

5. The Transform Process

C O O R D I N A T E S P A C E S & T R A N S F O R M A T I O N S I N I N D E S I G N C S 4 - C C   •   (C) I N D I S C R I P T S . C O M   •   V E R S I O N 3 . 2 (O C T . 2 0 2 1)

41

SUMMARY

The transform() method is a powerful tool for pro-
cessing a transformation of any kind onto a source
object. It expects three mandatory arguments:

 → A coordinate space, which specifies the per-
spective of the transformation, that is, the frame where
it appears to occur. The actual, underlying process is
anyway about changing the affine map of the source
object (with respect to the perspective space.)

 → A location specifier that defines the temporary
origin of the transformation. Two reciprocal transla-
tions matrices are in fact involved (because a transfor-
mation matrix as such cannot specify a custom origin.)

 → A TransformationMatrix object (or a set of six
equivalent numbers) that defines all components of the
transformation to be processed.

In addition, transform() supports a fourth, optional
argument, based on MatrixContent enumerator(s). It
allows to forcibly reset matrix data instead of com-
pounding existing components with new ones.

A crucial preference, app.transformPreferences.
whenScaling, may radically change the way scaling
operations are executed. If WhenScalingOptions.
applyToContent is active, then any scaling transforma-
tion is turned into a deformation (resizing) unless the
source object is a Spread.

EXERCISES

001.  Noting that an affine map M can be rewrit-
ten M × P × S × S -1 × P -1 (P denoting the parent-to-
spread matrix, S denoting the spread-to-paste-
board matrix), express the final affine map M ’ once a
transformation T has been applied, from the pasteboard
perspective, to the source object.

002.  Let Q  be an already rotated, 100% scaled Rectangle
living in a Spread (as in the figure below,) and T any
rotation matrix.12

Consider the following code template:
	 Q.transform(<space>,AnchorPoint.centerAnchor,T)
Why does it produce the same result from whatever
perspective <space> (either innerCoordinates or
parentCoordinates)? Would you have observed the
same outcome with a x-scaling matrix? Why?

003.  Many Graphic objects of a Document have been
mistakenly skewed (by various angles) relative to their
containers. All those shear effects should affect the
parent frames instead! Write a script that fixes the
problem, with respect to other existing transform states.

12.	For example, T = [cos20° -sin20° sin20° cos20° 0 0], but the
rotation angle does not matter here.

004.  A colleague asks you to evaluate a script that con-
tains the following line:
myFrame.transform(

CoordinateSpaces.pageCoordinates,
[ [100, 20], AnchorPoint.centerAnchor ],
[1, 0, -2, 1, 0, 0], undefined, true);

Explain the meaning and impact of each argument.
Why is there good reason to suspect that myFrame will
move?

005.  Using transform() in both stages, divide by 2 the
height of a Page (deformation), then apply a 200% scaling
factor along its vertical axis (transformation) so it finally
looks exactly as it was at the beginning (in the GUI.)
Show, however, that the final state is not identical to
the original state.13

13.	 Interesting experiments can be done through PDF export.

	COVER
	1. KEY CONCEPTS
	2D Coordinate Systems
	Fig. 1 - Ruler Coordinate System

	Affine Maps
	Fig. 2 - Different Coordinate Pairs

	Relative Locations and Inner Space
	Fig. 3 - Moving a Group

	Transformations Only Re-Map Coordinates
	Fig. 4 - Inner Space
	Fig. 5 - Child to Device Mapping
	Fig. 6 - Result of Altering the Map

	Maps, Transformations and Matrices
	Fig. 7 - Basic Transformations

	Matrix Patterns
	Fig. 8 - Complex Skew Mapping

	Matrix Product
	InDesign's Canonical Transformation Order (SxHxRxT)
	Fig. 9 - Transformation Order in the GUI

	Transformation vs. Deformation
	Fig. 10 - Y-Scale Example

	Hierarchical Mapping
	Fig. 11 - Hierarchy of Affine Maps

	SUMMARY
	EXERCISES

	2. INDESIGN COORDINATE SPACES
	Pasteboard Coordinate Space
	Fig. 12 - Pasteboard Space

	Spread Coordinate Space
	Fig. 13 - Typical Spread Space
	Fig. 14 - Spread-to-Pasteboard Mapping
	Fig. 15 - Rotated Spread View
	Code 01 - Get the affine map of a spread
	Code 02 - Display the rotation angle of a spread

	Page Coordinate Space
	Fig. 16 - Typical Page Space
	Fig. 17 - Typical Four-Page Spread
	Code 03 - Display pages translation values

	Page Size and Location Issues
	Fig. 18 - Various Issues with Page Location and Size

	Inner Coordinate Space of a Page Item
	Code 04 - Transformation matrix of a rectangle in the pasteboard
	Fig. 19 - Result of Moving a Shape
	Fig. 20 - Chasles' Relation

	Moving vs. Displacing
	Fig. 21 - Moving (translation) vs. Displacing

	SUMMARY
	EXERCISES

	3. BOUNDING BOXES SECRETS
	A Bounding Box Depends on a Coordinate Space
	Fig. 22 - Infinite Ways of Enclosing a Shape

	A Bounding Box Defines a Coordinate System
	Fig. 23 - Inner Box and In-Parent Box

	Path Bounds vs. Visible Bounds
	Fig. 24 - How Stroke Effects Change the Visible Box

	SUMMARY
	EXERCISES

	4. RESOLVING LOCATIONS
	What is a Location?
	Fig. 25 - Different Expressions of the Same Location

	Location Specifiers
	Fig. 26 - Three Ways of Defining a Location in InDesign

	Syntax of a Location in ExtendScript
	Fig. 27 - Parameters of resolve()

	Understanding resolve()
	Fig. 28 - Two Examples of Resolving an Anchor Point

	Resolving Locations: The "T2B" Case
	Fig. 29 - Nontrivial Transform States
	Fig. 30 - Basic Decomposition of the Box System

	Refining the "T2B" Algorithm
	Fig. 31 - Advanced Decomposition of the Box System
	Code 05 (Fig. 32) - T2B Algorithm

	InDesign’s Ruler System
	Fig. 33 - The Viewport under Wild Settings
	Fig. 34 - The Ruler System in Different Modes

	Details About Page-Based Ruler Systems
	Fig. 35 - Page Ruler Coordinates and Ruler-Space Locations

	SUMMARY
	EXERCISES

	5. THE TRANSFORM PROCESS
	The "Transform Space" Enigma
	Fig. 36 - Affine Map and Transformation Matrix
	Fig. 37 - Transforming the Source from its Inner Space
	Fig. 38 - Transforming the Source from its Parent Space
	Fig. 39 - Child Transform from Parent Space vs. Parent Transform

	Transformation Origin
	Fig. 40 - Implied Translations behind Temporary Origin

	Matrix Content Flags
	Fig. 41 - Parameters of transform()
	Code 06 - Clear Transformations (in Pasteboard Perspective)
	Fig. 42 - Clearing Transformations: Pasteboard vs. Parent

	Transform Preferences
	Fig. 43 - "When Scaling" General Preference
	Code 07 - Spread Scaling Test

	SUMMARY
	EXERCISES

